
www.manaraa.com

1An Event-Based Architecture De�nitionLanguageDavid C. Luckham, James VeraAbstract| This paper discusses general requirements forarchitecture de�nition languages, and describes the syntaxand semantics of the subset of theRapide language that is de-signed to satisfy these requirements. Rapide is a concurrentevent-based simulation language for de�ning and simulatingthe behavior of system architectures. Rapide is intended formodelling the architectures of concurrent and distributedsystems, both hardware and software. In order to repre-sent the behavior of distributed systems in as much detailas possible, Rapide is designed to make the greatest posi-ble use of event-based modelling by producing causal eventsimulations. When a Rapide model is executed it producesa simulation that shows not only the events that make upthe model's behavior, and their timestamps, but also whichevents caused other events, and which events happened in-dependently.The architecture de�nition features of Rapide are de-scribed here: event patterns, interfaces, architectures andevent pattern mappings. The use of these features to buildcausal event models of both static and dynamic architec-tures is illustrated by a series of simple examples from bothsoftware and hardware. Also we give a detailed example ofthe use of event pattern mappings to de�ne the relationshipbetween two architectures at di�erent levels of abstraction.Finally, we discuss briey how Rapide is related to otherevent-based languages.Keywords|Rapide, architecture de�nition languages, par-tially ordered event sets, architecture, prototyping, concur-rency, simulation, formal constraints, event patterns, causal-ity. I. IntroductionRapide [LVB+93], [LKA+95] is an executable architec-ture de�nition language (EADL). Although it has manyof the features of present-day event-based simulation lan-guages, it also provides new features to represent systemarchitecture (see, e.g., [LVM]).In this paper we �rst describe design requirements forEADLs. The architecture de�nition features of Rapideare then presented. Their semantics are described in termsof causal event executions and illustrated by a series ofsimple examples. We show how these features can be usedto model the behavior of both static and dynamic archi-tectures. We also show how mappings can relate widelydi�erent architectures, one at a high level of abstractionand another at a much more detailed level. Finally, wegive a brief history of Rapide and the current status of itssupporting toolset.Other features of Rapide are described in other papers:these are object-oriented features for deriving new interfacetypes and modules from previous ones [KLM94], [Tea94c],concurrent reactive programming constructs [Tea94a], andformal constraints [Tea94b]. An earlier version of RapideThis project is funded by DARPA under ONR contract N00014-92-J-1928 and AFOSR under Grant AFOSR91-0354

was outlined in [LKA+95], and its use to model onelarge-scale example, the X/Open DTP standard architec-ture [XoD92] standard was described. In that paper wediscussed how mappings, in conjunction with formal con-straints, can be used to test conformance of systems toarchitectural standards.The current simulation toolset for Rapide has been builtfor modelling and simulationof architectural designs duringthe early phases of system development, and also for testingconformance of systems to architectural designs.II. Features for defining architectureThere is now a widespread belief that software engineer-ing must go beyond object oriented methods to a new tech-nology based upon \architecture". Technologies such asCORBA [Gro91], for example, allow distributed systemsof interacting modules to be wired together. However, anarchitectural plan of the system is needed to both guidethe \wiring-up" and to prototype the behavior of the sys-tem before e�ort is put into building the modules (i.e., thesystem's components).An architecture in Rapide is an executable speci�cationof a class of systems. It can be at any level of abstrac-tion. An architecture consists of interfaces, connections,and constraints. The interfaces specify the behavior ofcomponents of the system, the connections de�ne the com-munication between components using only the featuresspeci�ed in their interfaces, and the constraints restrict thebehavior of the interfaces and connections. This is calledan interface connection architecture [LVM] since the com-munication between system components is de�ned by con-nections between their interfaces. When a Rapide archi-tecture is executed it produces a causal event history whichis automatically checked for conformace to constraints.Interface connection architectures can be built quicklyin Rapide. They have two main purposes. First, to buildwith relatively little e�ort, a prototype that enables one tostudy and predict behavior before e�ort is put into buildinga full system. Second, to de�ne a \plan" or \framework"to guide construction of a system, possibly by automatedsynthesis methods. To achieve these goals,� Rapide must be powerful enough to de�ne interfaceconnection architectures that can be executed andtheir properties measured,� the system, when it is built, must conform to the ar-chitecture.A. Requirements for ADLsThe requirement of \su�cient power" leads us to thefollowing general principles to be satis�ed by the Rapide

www.manaraa.com

2design.�Component abstraction: Interfaces, which are the fea-ture in Rapide for component abstraction, should de�ne :(i) the facilities provided and the facilities required bya component, (ii) the component's behavior in a form al-lowing execution and analysis.Interfaces in languages such as Ada [Ada94] (e.g., tasktypes and package speci�cations), the public parts of C++classes, or entity interfaces in VHDL [VHD87], specify onlythe signatures of their provided facilities (e.g., functions,task entries or ports). None de�ne features they requirefrom other components, nor do they de�ne behavior inde-pendently of a module instance.�Communication abstraction:Connections, which are the feature in Rapide for de�n-ing the communication between components, should (i) useonly the interfaces of components, and (ii) de�ne commu-nication in a form allowing execution and analysis.In programming languages, although interfaces restrictthe visibility into modules, communication between mod-ules is implemented in the modules. For example, commu-nication is represented by function calls buried in classes(C++) or package bodies (Ada), or task entry calls buriedin task bodies (Ada). Communication is implemented butthere is no communication abstraction.On the other hand, hardware simulation languages doprovide communication abstraction, but only for static ar-chitectures. In VHDL, for example, communication be-tween entity interfaces is de�ned in structural architecturesby port maps that wire interfaces together. Separate con-�gurations associate entity bodies (modules) with inter-faces in an architecture; di�erent con�gurations de�ne dif-ferent implementations of an architecture, but the commu-nication is de�ned once in the architecture for all possiblecon�gurations of it. Similarly, static connections betweena �xed number of component interfaces are expressed inVerilog [TM91] by parameter bindings.�Communication integrity: Interfaces may communi-cate directly only if there is an architecture connection be-tween the interfaces.This requires the architecture's connections to de�ne allthe direct communication between pairs of interfaces. Itis possible for two unconnected interfaces to communicatethrough a third interface { this is called indirect communi-cation.�Dynamicism: Rapide should be capable of modellingarchitectures of dynamic systems in which the number ofcomponents and connections may vary when the system isexecuted.�Causality and Time: Rapide should be capable of ex-pressing casual dependency and independency between be-haviors of interfaces and connections, and their timing.These two requirements are forced by the wealth of dy-namic and distributed systems where architecture de�ni-tion and modelling has become a primary issue. Manyevent-based modelling languages provide simulation time-stamps and determinisitic event interleaving. Concurrencyis thereby expressed in simulation results, but dependence

and independence of behaviors is not. Moreover, currentADL's cannot model dynamic systems.�Hierarchical Re�nement: Rapide should allow bothcomponents and connections in an architecture to be re-placed by (sub)architectures to form new architectures.This is a requirement that is needed to allow hierarchicaldesign methodologies as currently practiced in many areas(e.g., hardware or protocols), to be applied to architecturemodelling. Most programming and simulation languagessupport hierachical re�nement of components, generally byallowing an interface to be implemented by a module con-taining a set of submodules. We require connections alsoto be re�nable into architectures.�Relativity: Rapide should provide features for inter-preting the behavior of one architecture as behavior of an-other architecture or an interface.This requirement is more general than, and complemen-tary with, hierarchical re�nement. When architectures,often for the same system, are de�ned at di�erent lev-els of abstraction, they tend to di�er widely in the kindsand numbers of components and the types of data beingcommunicated. Current technology does not provide anymeans to explicitly de�ne the relationships between sucharchitectures. Here, we require Rapide to provide featuresfor relating architectures. Such features have several appli-cations { e.g., by relating architectures at di�erent levelsof abstraction, one architecture may serve as a constrainton the other. We illustrate this in Section VII.B. Conformance to ArchitectureA system \has" an architecture if it conforms to it; con-versely a Rapide architecture is a constraint on systems.There are three basic conformance criteria:1. decomposition : for each interface in the architec-ture there should be a unique module correspondingto it in the system (i.e., the component implementingthat interface). 12. interface conformance: each component in the sys-tem must conform to its interface. Since behavioralconstraints can be part of Rapide interfaces, this con-formance requirement is stronger than the syntactic in-terface conformance usually required by programminglanguages.3. communication integrity: the system's compo-nents communicate directly only as speci�ed by theinterface connections of the architecture.A system must conform to an architecture in order thatthe architecture can be used to predict the system's be-havior or to decide various issues about maintaining andmodifying the system (see [LVM]).How to test or prove that a system conforms to an archi-tecture is beyond the scope of this paper. There are styleguidelines for using Rapide to help ensure communicationintegrity. One guideline requires components to access onlytheir own interface constituents to communicate with other1Mappings discussed later allow a more sophisticated decomposi-tion between a single interface and a subsystem of components.

www.manaraa.com

3components. This helps to ensure that all direct commu-nication between components is by interface connections.Also, the types of objects that can be communicated mustbe restricted { e.g., only immutable objects { to preventcommunication trojan horses.III. Causal Event SimulationRapide is an event processing language. Events are sim-ply tuples of information containing, e.g., who generatedthe event, what activity was done, data values, the timeand duration, etc. The semantics of Rapide are de�nedin terms of event processing | generating events, send-ing events from one component to another, and observingevents. Components have the ability to generate eventsindependently of one another. Asynchronous communica-tion is modelled by connections that react to events gen-erated by components and then generate events at othercomponents; the events reacted to cause the events gen-erated by a connection. Causality between events is alsomodelled by reactive behaviors of components. In addi-tion, synchronous communication can be modelled by con-nections between function calls. The result of executing aRapide architecture (a set of interfaces and connections)is a poset 2 showing the dependencies and independenciesbetween events.Let us start with some intuitive examples of how posetscapture the semantics of communication architectures.The components in �gure 1 are airplanes and a con-trol tower. Connections between them are depicted byarrows. The intuitive semantics of this picture are thatairplanes can generate Radio events containing data whichcause Receive events containing the same data that can beobserved by the control tower. When this architecture isde�ned in Rapide and executed, a typical resulting posetis shown in �gure 2. Here, events are depicted as nodesand dependencies between events as directed arcs. Theposet shows that airplanes, A1, A2, A3, A4 have generatedRadio events independently, and that each Radio caused aReceive event at the control tower, SFO; also the Receiveevents are independent, so SFO may observe them in anyorder, possibly concurrently. Timestamps and other infor-mation are also contained in events.A variant of this architecture may require all commu-nication to the control tower to be pipelined as shown in�gure 3. Here, airplanes are connected to the control towerby a pipeline connector component which orders events itreceives into a sequence which is then received by the tower.When this architecture in �gure 3 is executed, resultingposets show additional dependencies due to the pipelineconnector; all Receive events are ordered into a linear de-pendency sequence. This implies that the Receive eventsare observed one-by-one at SFO in their dependency order.The semantic di�erences between the broadcast andpipeline architectures are shown clearly by the posets inthe two �gures, 2, 4. Trace-based simulation languagesdo not capture event dependencies and would produce the2Partially Ordered Set of Events.

same event trace for these two architectures.IV. Event PatternsEvent patterns are expressions used in de�ning behaviorsof components, connections, and mappings between archi-tectures. They are fundamental in representing dynamicarchitectures.An action is de�ned by an action name, a, and a �nitelist of types, < t1; t2; : : : tn > called the signature of a. Anevent of action a is a tuple of information with a uniqueevent identi�er. The event contains the action name, a,data objects of the signature types, and certain other in-formation such as the component that generated it, or thecomponent that is the destination of the event, the event'stimestamps and dependency history. We use a tuple nota-tion, a(v1; : : : ; vn), for events. An event's identi�er is notpart of the tuple notation. Distinct events may have thesame tuple.Event patterns (or simply, patterns) are expressions thatde�ne sets of events and their dependency and timing re-lationships (i.e., posets).Syntaxpattern ::= basic pattern| pattern binary pattern operator pattern| pattern '^' '(' iterator operatorbinary pattern operator ')'-- which we print as-- patterniterator operator binary pattern operator| pattern where guard| '(' placeholder list ':' pattern ')'| '(' pattern ')'pattern during '(' expression ','expression ')'binary pattern operator ::= '->' -- printed as !| '||' | and | or | '�'iterator operator ::= '*' | '+'| integer expressionguard ::= boolean expressionbasic pattern ::= [performer part '.']action part ['(' parameter association ')']performer part ::= component expressionaction part ::= action name| type expression '::'action nameSemanticsRapide uses two special kinds of variable. The �rst iscalled a placeholder. Placeholder names always begin witha \?" to distinguish them from variable names which al-ways begin with an alphabetic character. Placeholders aretyped and declared the same way as ordinary variables, andthey can be used similarly to build expressions. However,they di�er from ordinary variables in that they can only bebound to an object as a result of pattern matching (below).

www.manaraa.com

4
Broadcast CommunicationFig. 1. A broadcast architecture.

SFO.Receive (M2)

A2.Radio (M2)

SFO.Receive (M1)

A1.Radio (M1)

SFO.Receive (M3)

A3.Radio (M3)

SFO.Receive (M4)

A4.Radio (M4)

Event Dependencies in Broadcast ConnectionFig. 2. Broadcast events.The other kind of special variable is an iterator. An it-erator is a universal quanti�er over a type. Iterator namesalways begin with a \!" to distinguish them from ordi-nary variables and placeholders. Iterators are typed anddeclared the same way as ordinary variables. They di�erfrom ordinary variables in that they may not be assigned values. A pattern containing an iterator is equivalent tothe conjunction (and) of the instances of the pattern withthe iterator replaced by each object of its type. Iteratorsare important in de�ning \fan out" connection rules (seeSection VI).The process of deciding if a given poset matches a pattern

www.manaraa.com

5
Pipeline CommunicationFig. 3. A pipeline architecture.

SFO.Receive (M2)

A2.Radio (M2)

SFO.Receive (M1)

A1.Radio (M1)

SFO.Receive (M3)

A3.Radio (M3)

SFO.Receive (M4)

A4.Radio (M4)

Event Dependencies in Pipeline ConnectionFig. 4. Pipeline events.is called pattern matching. This can be de�ned formallyas a recursive function taking as arguments a pattern anda �nite poset. That is, given a pattern PatExp and a�nite poset Pos, there is a recursively de�ned algorithmfor �nding a type-correct binding B of each placeholder toan object such that PatExp j B matches Pos, according to the clauses below; PatExp j B is the instance of PatExpthat results when each placeholder is replaced at all of itsoccurrences by its binding in B.If PatExp is a basic pattern, then Pos = PatExp j B.If PatExp is a composite event pattern, built up fromevent patterns, P; P 0, and a pattern operation, then Pos

www.manaraa.com

6matches it if Pos is the union of the matches for P and P 0under the same binding of placeholders, B, as follows:1. dependent: P ! P 0. Pos is a match if all of the eventsin the match for P 0 depend on all of the events in thematch for P .2. both: P and P 0. Pos is a match if there are matchesfor patterns P and P 0.3. distinct: P � P 0. Pos is a match if all of the eventswhich matched P are distinct from the events whichmatched P 0.4. either: P or P 0. Pos is a match if there is a matchof pattern P or a match of pattern P 0 (in this case amatch for both patterns is not needed).5. independent: P jj P 0. Pos is a match if none of theevents which matched P are dependent on any of theevents which matched P 0 and vice-versa.6. after: P < P 0. Pos is a match if all of the eventswhich matched P have timestamps (according to theRapide clock) less than those of all of the events whichmatched P 0.7. iteration: P exp op is shorthand for the pattern builtup from exp copies of P and the operation op whereexp is one of � (zero or more), + (one or more), or n(exactly integer n copies), and op is any of the preced-ing binary operations.8. guarded pattern: P whereE. Pos is a match if itis a match of P and the boolean expression E is truewhen Pos is observed by the component or architecturecontaining the pattern (see Section V).ExamplesSimple PatternsHere are some simple patterns and descriptions of theposets which would match them.A(?i) and B(?i);{ { An A event and a B event with the same parameter.A ! B;{ { An A event and a B event which depends on the A event.A < B;{ { An A event and a B event which is temporally later{ { than the A event.A(?i) where ?i > 4;{ { An event whose parameter is greater than 4.An iteratorwith Sender, Receiver;: : :?s : Sender;!r : Receiver;?d : Data;: : :{ { A connection rule.?s.Send(?d) => !r.Receive(?d);;Comments: The connection rule is triggered by any posetthat matches the left side pattern | an event in which asender generates a send of some data. Both ?s and ?dare bound by the match. The right side restricted patternis then executed. This results in events in which every re-ceiver object in the system (i.e., every match for !r) receivesthe same data, ?d.

Discussion: Patterns are used in interfaces to de�ne be-haviors, and in architectures to de�ne connections. Forexample, a pattern may be used in an interface to de�neconcurrent behavior consisting of several events being gen-erated simultaneously.Patterns are used in three ways.1. to recognize (or trigger on) posets with particular fea-tures.2. to specify constraints on posets, thus constraining be-haviors.3. to generate posets in response to a trigger, thus gen-erating behaviors.In the �rst two applications the most general patterns maybe used. but in the third use, the pattern must fully specifya poset. This means, for example, that it can't be an \or"of two posets. So only restricted patterns can be used togenerate behaviors. V. InterfacesAn interface de�nes a type of components. It providesan abstract de�nition of externally visible behavior | i.e.,the behavior that is visible to, and may be observed by, anarchitecture containing those components. An interface de-�nes (i) the kinds of events that a component can observeor generate, (ii) the functions it provides to other compo-nents or requires from other components, (iii) its statesand state transitions, and (iv) constraints on its externalbehavior. In general, components can be small static val-ues (e.g., integers) or large dynamic systems with varyingstate (e.g., airplanes). Interface types provide componentabstraction (Section II).Structure of interface typesThe syntax structure of interfaces is outlined in Figure 5.(\f X g" means a list of 0 or more X's, and \[X]" meansX is optional.) Standard Pascal-like types (Boolean, string,integer, array, record etc., but not pointers) are assumedhere without de�nition. These are called the Procrusteantypes. 3 In Rapide name types (below) are used instead ofpointers.type declaration ::=type identi�er is interface expression ';'interface expression ::=interfacef interface constituent gend [interface]3After Procrustes, a villainous son of Poseidon in Greek myth whoaltered the size of visitors to �t his facilities.

www.manaraa.com

7interface constituent ::=provides f object name declaration gj requires f object name declaration gj in action f action declaration gj out action f action declaration gj service f service declaration gj behavior[declaration list]begin f state transition rule gj constraint pattern constraint listaction declaration ::=name ['('name-list ':'type namef','name list ':'type nameg')']service declaration ::=name ['[' expr '..' expr ']']':' [dual] interface type namedeclarations ::=Procrustean type, object and function declarations,placeholder, iterator, and name declarationsstate transition rule ::=trigger connection op transition body ';;'connection op ::= `=>` | `||>`trigger ::= pattern -- see Section IV| boolean expressionconstraint ::= pattern ';'transition body ::= fstate assignmentg[restricted pattern]Fig. 5. Outline of interface syntax.Many features are omitted from this overview. For ex-ample, interface type declarations can have type and objectparameters (thus allowing polymorphic types), can inheritfrom other type declarations, and can refer to seperatelycompiled units.Semantics of interfacesAn interface de�nes a type of object called a module.Modules that conform to an interface belong to its type.If an interface is a component of an architecture then amodule of the interface's type can be a component of asystem that conforms to that architecture. The modulecorresponds under the decomposition principle (Section II-B)to that interface. The architecture is called the parentof the interface, and the system is called an instance of thearchitecture.First we describe how interfaces are used to de�ne com-munication between modules of a conforming system.An interface declares sets of provides, requires, actionand service constituents. Those interface constituents arevisible to the parent architecture. Other components of thearchitecture can be wired up (by connections, Section VI)

to those interface constituents. Thus communication be-tween interfaces is de�ned by the connections.Object name declarations are declarations of objects ofprocrustean types (e.g, integers, arrays, etc.), interfacetypes or function types. A module conforming to the inter-face must provide the objects and functions named in theprovides constituents. Thus, for example, other compo-nents can be connected to call its provided functions. Con-versely, a module may call requires functions of its interfaceand assume they are connected to call provided functionsof other components. Connections between required andprovided functions de�ne synchronous communication.An interface speci�es the types of events its modules canobserve and generate by declaring, respectively, in and outactions. Connections in the parent architecture can callthe in actions of a module's interface, thus generating inevents which the module can observe; conversely, the mod-ule can call its out actions, thereby generating events whichthe parent architecture can observe. Architecture connec-tions between components' actions react to events gener-ated by one component by generating events observed byother components { thus connections de�ne asynchronouscommunication between components.Any other constituents of a module (not in its inter-face) can be referred to only locally within the module.Conversely, a module can only refer to its interface con-stituents and its internal constituents. These visibilityrules, together with parameter type restrictions (later) en-sure communication integrity (Section II-B) of systems thatare instances of an architecture. Thus, modules of a sys-tem communicate through the connections of the system'sarchitecture.Next we describe how the behaviors of interfaces executeas components of an interface connection architecture.An interface optionally contains a behavior which con-sists of a set of types, objects, functions, and transitionrules. Only procrustean objects are allowed. Objects de-clared in an interface model state. Transition rules modelhow modules of the type react to patterns of observedevents by changing their states and generating events. Abehavior is an abstraction of modules of that interface type.An interface observes in events from the architecture. Itreacts by executing its transition rules and generating outevents which are sent to other components. An interfacecan also generate its own in events and observe its own outevents. Similarly, an interface observes calls to its providesfunctions; the interface must declare functions in its be-havior that are executed in response to these calls. Whenan interface calls its requires functions it depends upon theparent architecture to connect those calls to provides func-tions in other components.There are two kinds of transition rules in behaviors.Those with the operator, =>, are called pipes; those withthe operator, jj> are called agents. A pipe with a sequen-tial pattern in its body speci�es the behavior of a singlethread of control, whereas an agent speci�es the behaviorof arbitrarily many threads (below).A state transition rule has two parts, a trigger and a

www.manaraa.com

8body. A trigger is either an event pattern or a boolean-valued expression. A body is an optional set of state as-signments followed by a restricted pattern which describesa poset. A provides function body is treated as if it was atransition rule that is triggered by a function call; functioncalls are treated as events.The execution semantics of transition rules are as fol-lows. If any of the boolean triggers are true, the process ofarbitrarily choosing one of the true triggers, executing itsrule body is repeated until none of the boolean triggers istrue.Next, the interface observes an event from the set ofits events that have been generated and not yet observed.These events are queued awaiting observation. An eventis observed by an interface at most once. If no events arequeued, the module waits for one. Events are observed ina sequential order which is consistent with their temporaland causal orderings. 4Observing an event may trigger one or more transitionrules. A rule R triggers if some subset of the events thus farobserved but not yet used in triggeringR match its pattern.If more than one set of observed events can trigger a rule,the earliest (in time and dependency) and largest is chosen.If R triggers, the binding of placeholders used to match itspattern is applied to its body, and that instance ofR0s bodyis then ready for execution. The set of rule body instancesthat are ready for execution are then executed one by onein some order.The guards in pattern triggers are evaluated wheneveran interface event is generated. Their values are associatedwith the event. In matching a pattern that has a guard(i.e., is restricted by a where condition { the guard), �rstthe pattern is matched with the observed events and thenthe guard is evaluated. The value of the guard that isassociated with the last event used in matching the pat-tern is taken as the value of the guard when the pattern ismatched.Executing a rule body consists of changing the state ofthe behavior part (by calling operations of objects declaredthere), generating the unique poset of new events de�nedby the instance of the restricted pattern, and adding theposet to the execution of the parent architecture. Whenthe new events are added they depend on all of the eventsin the match of the trigger; they also depend on events thattriggered the last rules to change any of the state objectsthat are referenced in executing the rule (e.g., in a guard inthe trigger or in a parameter expression on the right sideof the rule). In addition, if the rule is a pipe, then all ofthe generated events depend on all events generated by anyprevious triggering of the rule.Execution of a behavior then continues with evaluatingboolean triggers �rst, and then observing events, as above.Below is a schema for the above ordering of activities:loopwhile (one or more boolean triggersare true) loopchoose one of the true triggers and4This is called the orderly observation principle.

execute its rule's body;end while;select an event E ;for all pattern triggers triggered by E loopexecute the trigger's rule's bodyend for;end loop;Any event may take part in triggering a given rule atmost once, although it may take part in triggering severalrules.Constraints specify restrictions on the behavior of an in-terface. That is, the behavior that results from executingtransition rules must match the pattern of a constraint. Forexample, a constraint can specify that rules trigger only incertain orders, in certain states, etc.The behavior of a module corresponding to an interfacein an instance of an architecture is constrained to be con-sistent with both the interface's behavior and constraints{ i.e., interface behaviors act as additional constraints onmodules that conform to the interface. 5ServicesA service names a group of constituents in an interface(note, it is not an object, it is a name.) Services provide apowerful notation for connecting large numbers of actionsor functions (Section VI). Services also specify the types of(complementary) connections an interface \expects" fromits parent architecture. So services specify, to some degree,the types of other components to which an interface expectsto be connected.A service S of type T in interface I declares that typeI has the provides and requires functions and objects ofT, and the in and out actions and services of T. To namethem the name \S" must be appended with the usual \."notation before the name of the constituent. For example,if type T has an out action A, then \S.A" is a name of theout action A of I.Since a service is a type, it is a concise notation for repli-cation (e.g., one can declare arrays of a service) of largenumbers of connections.A service S0 is dual to S if its type is dual T. A dual typecontains a set of constituents of I with the same names asconstituents of T, but with dual roles: a provides functionof T is a requires function of dual T, an in action of T isan out action of dual T, a type S service of T is a typedual S service of dual T, and conversely. Dual services ofthe same type in objects (usually of di�erent types) may beconnected together easily since they have complimentaryconstituents.Name typesInstead of pointers, Rapide has name types. For everyinterface type T there is a corresponding type &T calledthe name type of T. T is said to be the base type of &T.For each object O of the interface type T there is a cor-responding object in the name type &T called the name5In rapide-1 modules can also be written in various programminglanguages.

www.manaraa.com

9of O. Each interface type T has an operator \&" de�nedon it which converts an object of T into the correspondingname in the name type, &T. The only operators de�nedon name types are equality (\="), assignment (\:="), anddereferencing (*"). Equality and assignment are de�nedas usual. The dereference operator of a name type &Tis de�ned to convert a name in &T to the correspondingobject of the interface type T.Only the parent architecture (Section VI) of T maydereference T0s name. This restriction distinguishes nametypes from pointers; its purpose is to ensure communica-tion integrity (Section II-B). An example of name types isgiven in Section VI.DiscussionComponent abstraction (Section II) is provided by in-terface types which include a powerful method of de�ningbehavior. A single Rapide transition rule can express thereaction of a concurrent/distributed system since its out-put pattern can de�ne a complex poset of events with var-ious dependencies and timing. Generally, many di�erentmodules or architectures will conform (Section VI) to aninterface.Communication integrity of architectures (Section II) isaided by style guidelines on the types of parameters of ac-tions and functions, together with the visibility rules formodules and interfaces. Parameters of functions and ac-tions should be of Procrustean types or name types. Con-sequently if a name of a component is passed, the receivercannot dereference it to start direct communication withthat component; only the parent architecture can commu-nicate directly with its components. Style guidelines arenot enforced by the Rapide compiler.Behaviors are non determinisitic. In matching triggersof transition rules, events are selected one at a time andrules that trigger are executed one at a time in an arbi-trary order. Because of shared state between rules, andsince independent events may be selected in any order, thetriggering on posets and order of execution of state tran-sitions, as well as the parameter values of the events orfunction calls they generate, are all non deterministic.Constraints may be supported in di�erent ways by var-ious tools. For example, executions can be checked andviolations detected (runtime checking tools), or transitionsmay be allowed to execute only if a constraint won't beviolated (safe execution), or transition rules can be provedconsistent with constraints (veri�cation).Complexity of Interfaces: Interfaces specify separatelysynchronous communication by function calls from asyn-chronous communication by events. Attempts to simplifyinterface design by using the same speci�cation mechanism(e.g., provides and requires actions) lead users to incorrectexpectations, both in subtyping of interfaces ([KLM94]),and in semantic equivalences between functions and ac-tions. Interfaces also provide behaviors and constraintsto satisfy component abstraction (Section II). Overall,Rapide interfaces are more complex than, say, class pub-lic parts in C++ or package speci�cations in Ada. Indeed,

richer interfaces are needed for architecture de�nition sincethey must go beyond the traditional information hiding roleof interfaces if they are to support component abstraction.ExamplesExample: Automobile controls.interface AutoControls isprovidesfunction Speedometer return MPH;function Gas return Gallons;in action Steering Wheel(A : Angle),in action Accelerator(P : Position),in action Brake(P : Pressure);out action Warning(S : Status);: : : { { other constituents.end AutoControls;Comments: Instruments are speci�ed as provides func-tions or out actions. An AutoControls component (an in-stance of the interface or a module of the type) must sup-ply bodies or reactive rules for computing the functions.A user can call these functions, if its requires functions areconnected to them by the architecture, and obtain their re-turn results. So, in e�ect, they output readings when asked.Similarly, a user can observe out events if the architectureconnects them to in events of the user.Controls are speci�ed as in actions. An AutoControlscomponent can observe, select and react to in events cor-responding to these actions. A user must output eventscontaining position, pressure or angle data; this outputis connected by the architecture to these in actions andthereby observed by the Autocontrols as in events.AutoControls can output Warning Light events with ap-propriate status data; the assumption is the parent archi-tecture will do something useful with them.Many di�erent modules (or architectural designs) willconform (next section) to this interface.Example: Speci�cation of concurrent behavior.: : :behaviorSpeedometer> 55 jj>Accelerator(0) jj Brake(High) jj Warning(On);;: : :Comments: This agent transition rule could be part of thebehavior of the AutoControl interface. It is triggered by aBoolean condition and speci�es a reaction consisting of thegeneration of three independent events. Two of these arein events which will be observed by the AutoControl objectitself. The other is an out event which will cause otherevents according to the architecture's rules.The events generated by triggering this rule will dependon whatever events caused Speedometer> 55 (e.g., eventscausing some local state to change). An agent rule suchas this one, does not impose any dependency between theevents generated by di�erent triggerings of the rule.This rule abstracts a behavior of AutoControl modules {albeit one that most drivers wouldn't like.

www.manaraa.com

10Example: An RS-232 servicetype RS232 is interfaceout action TXD; { { Transmit Data.in action RXD; { { Receive Data.out action RTS; { { Request to Send.in action CTS; { { Clear to Send.in action DSR; { { Data Set Ready.in action DCD; { { Data Carrier Detect.: : :end RS232;type Computer is interfaceservice S1, S2 : RS232;: : :end Computer;type Modem is interfaceservice S : dual RS232;: : :end Modem;Comments: RS-232 is a common interface used betweencomputers and modems. It de�nes 25 signals, some ofwhich are generated by the computer to the modem, andothers from the modem to the computer. Here RS�232is abstracted as an interface type with in and out actionscorresponding to the 25 signals.Using the service feature, a computer interface declarestwo RS�232 services. A modem interface declares a dualRS�232 service. Services in these interfaces express animportant abstraction of the modules with these interfaces.Namely, the modules \expect" to be connected to othermodules with RS�232 services, again illustrating supportfor component abstraction.A computer and a modem can be connected in an ar-chitecture by a single connection statement, as shown inSection VI. This allows architectures with potentially largenumbers of connections to be written with clarity and con-ciseness.Note that a more ambitious interface would contain abehavior part de�ning RS�232 prototcols.VI. ArchitecturesAn interface connection architecture is a set of interfaces,a set of connection rules, and a set of constraints. Con-nection rules de�ne relationships between events indepen-dently of any implementation; they are communication ab-straction constructs (Section II). Connections are de�nedusing event patterns. Event patterns provide the expres-sive power to de�ne both static and dynamic architectures(Section II).SyntaxAn architecture contains declarations of types, compo-nents and other objects, a set of connection rules, and aset of constraints.SemanticsThe optional return type name is the interface type ofthe architecture. An architecture de�nes a module of thatinterface type. If the return type is omitted, the empty

architecture ::=[with clause]architecture name [return name] isdeclarationsconnectionsfconnectiong[constraintsconstraints]end name ';'declarations ::=components, placeholders and Pascal-likeobject and function declarationsconnection ::=basic pattern list to basic pattern list ';;'| basic function pattern tofunction call expression ';;'| pattern connection op restricted pattern ';;'| pattern connection op component generation ';;'basic function pattern ::=function call expression [where expression]connection op ::= `=>` | `||>`basic pattern list ::= basic pattern| basic pattern list ',' basic patterncomponent generation ::=new nameconstraints ::= fpattern ';'gFig. 6. Outline of the architecture syntax.interface type, Triv, is the default. Generally, in Rapide,architectures are parameterized, and are therefore archi-tecture generators that, when called, return modules of thereturn type. Here, in order to focus on connection features,we have omitted parameterization.The Rapide architecture construct encapsulates both aninterface connection architecture in which all componentsare interfaces, and instances of such an architecture, inwhich components may be module of the interface types.Types and components are declared in the declarations sec-tion of an architecture.Static architectures may simply declare all componentsby naming them in object declarations. On the other hand,dynamic architectures may declare the interface types ofcomponents and rely on creation rules (below) to de�newhen, during execution, components of those types are cre-ated or destroyed.The connection part contains connection rules and cre-ation rules. Connections de�ne communication betweencomponents by events or function calls, and creation rulesde�ne event conditions that lead to creation of new com-ponents.A connection rule (Abbrev: connection) is composed oftwo patterns. The patterns are separated by a connectionoperator, (to, =>, jj>). As with transition rules, the leftpattern of a connection is called its trigger. The right side

www.manaraa.com

11of a connection is called its body.Connections are used to \wire up" components of anarchitecture as follows. A trigger must be a pattern ofout events or requires function calls of components; a bodymust be a pattern of in events or provides function calls ofcomponents. A connection may also wire the architecture'sinterface to its components. In this case, the trigger is apattern of in events and provides functions of the interfaceand the body is a pattern of in events and provides func-tions of components, or conversely, the trigger is a patternof out events and requires functions of components and thebody is a pattern of out events and requires functions ofthe interface.The semantics of executing connections is as follows.Events or function calls are either generated by the compo-nents in the architecture or observed at the interface of thearchitecture. These events are selected one-by-one (in anyorder that is consistent with their dependency and tempo-ral orders) and matched with the pattern triggers of theconnections. However, unlike transition rules, matching oftriggers of di�erent connections may take place indepen-dently or concurrently because there is no state shared be-tween connections. The essential points are: (i) any eventmay contribute once to triggering a particular connectionrule but may trigger many di�erent rules, and (ii) if morethan one poset of the selected events can trigger a rulethen an earliest (in the dependency order) maximal posetis used.The guards in the pattern triggers of connection rulesare evaluated when an event is generated that can be ob-served by the architecture. Their values are associated withthe event for future reference. During matching, if Pat isguarded by a where condition, the value of that guardthat was associated with the last event to be selected inmatching Pat is used as the value of the guard.The number of guards that need be evaluated for anyobservable event can clearly be reduced in general. Anygiven event will be a potential participant in matching onlya subset of the guarded patterns in the set of connectiontriggers. This is a compiler optimization.Basic connections. A basic connection is a to connectionbetween two basic patterns, or more generally, between twolists of basic patterns. Consider a connection between twobasic patterns. Whenever an event matches (triggers) theleft pattern, Pat, in a basic connection rule, Pat toPat0,then (i) all placeholders in the right pattern, Pat0, mustbe bound by the match, (ii) the rule results in generatinga new in event whose tuple is the instance of Pat0, andthis event is received by the component named in that tu-ple, and (iii) the two events are equivalent with respect todependency and time.Equivalence of the two events means that all other eventshave the same dependency relationship to both of theevents, and also the two events have the same timestamps.This does not mean that the events are equal, but simplythat they cannot be distinguished by dependency or time.A basic connection between two lists of basic patternsis a shorthand for several basic connections. That is, a

match of any one of the left patterns causes (or triggers)the generation of the events, one for each pattern in theright list, and the events generated are all equivalent tothe triggering event with respect to dependency and time.Basic connections between functions. A basic connec-tion de�nes an alias of a requires function of a componentto a provides function of a component, and a sychronizationat each call between the caller and callee. The followingconditions must hold for a basic connection between func-tions to be correct: (i) the left pattern must match calls ofthe requires function and the right pattern mustmatch callsto the provides function, (ii) the provides function must bea subtype of the requires function.Evaluation of a call to the requires function triggers theconnection. The resulting instance of the connection's rightpattern must be a call to the provides function. The caller'sexecution is suspended, the call to the provides function isexecuted and any return object is returned to the caller asthe value of the (triggering) requires function call.By using guards in the triggering function call, the aliasfor a requires function can vary at runtime. If a requiresfunction call has more than one alias, perhaps because acall triggers more than one connection, one of the returnobjects is the result.Basic connections can also alias provides (or requires)functions of the architecture's interface to provides (or re-quires) functions of components, respectively.Basic connections between services. A basic connec-tion can be used to connect a service of a component toa dual service of a component. The connection de�nes aset of basic connections, one for each pair of constituentswith the same name in the two services. It is bi-directionalin the sense in each of the basic connections the out con-stituent is action or function name in the trigger and thein constituent is the action or function name in the body.General connections. The semantics of a general con-nection, Pat opPat0, where op is => or jj>, are as fol-lows. When Pat is matched, Pat0 must de�ne a uniqueposet (i.e., all placeholders in Pat0 must be bound by thematch). Then the connection is executed. The events inthe instance of Pat0 are generated together with the de-pendencies de�ned as follows:(i) each event in Pat0 depends on all events in the trigger-ing poset,(ii) each event depends on other events in Pat0 as de�nedby the pattern, Pat0,(iii) if the connection operator is => (a pipe) then all thegenerated events depend on all events generated by previ-ous triggerings of the connection.The result is a new poset of in events of components andout events of the interface.An architecture may be constrained by patterns in itsconstraint section. The sets of events generated by thearchitecture's interfaces and connections must match theconstraint patterns. Constraints may, for example, requirecomponents to use a particular communication protocol.As discussed in Section V, constraints may be supportedin di�erent ways by various tools.

www.manaraa.com

12Conformance to an interfaceIf an architecture is bound to a non-trival interface itshould conform to the interface. This means that :1. calls to provides function names in the interfaceshould result (if at all) in objects of the return type.To achieve this, the architecture should have basic con-nections aliasing provides function names in the inter-face to provides functions of its components, or alter-natively it can declare an executable function bodywith the same name.2. Any poset of interface events resulting from execut-ing the architecture should satisfy constraints in theinterface. That is, in events observed by the inter-face may trigger connections in the architecture, andresult eventually in out events of the interface beinggenerated by connections in the architecture. Theseout events will be related by dependencies and time tothe in events, thus de�ning posets of interface events.The posets of interface events must satisfy the inter-face constraints.3. An interface poset generated by an architecture mustbe a super poset of the poset generated by its interfacebehavior (i.e., a superset of the events with an iden-tical dependency order on the common subset). Inthis sense, an interface behavior (Section V) acts as aconstraint on an architecture of that interface type.DiscussionConnection rules provide communication abstraction(Section II). They refer only to constituents (functions andactions) of interfaces of components and are independentof the modules implementing the components.Basic connections are fundamental. A general connec-tion is, in fact, an abstract interface expressed in a suc-cinct notation. A general connection can be replaced inany architecture by a connector component (whose tran-sition rule expresses the same connection relation betweenin and out events) together with basic connections betweencomponents and the connector.Hierarchy (Section II) is provided by the ability to bindarchitectures to interfaces using connections, and by con-formance criteria. Both interfaces and connection rules canbe expanded into architectures (of lower level components).ExamplesExample: A basic connection.: : :?P : Person; ?B : Button;connections?P.Push(?B) toButton Light On(?B);;Comments: This basic connection links pairs of events.An event of any person pushing a button triggers the ruleand produces a new event denoting that the button's lightis on. The two events are identical with respect to depen-dency and time { i.e., they have the same dependencieswith all other events and the same timing. It is not pos-sible to distinguish the two events either by a clock or by

looking at their causal history. So the connection links per-sons and lift buttons in a very strong way; the actions ofpushing buttons and lighting buttons appear identical ac-cording to time and causal history.Example: A dynamic architecturewith Airplane, Control Center;architecture Air Control Sector is?A : Airplane; ?M : Msg;SFO : Control Center;: : :connections?A .Radio(?M) where ?A . InRange(SFO)jj> SFO .Receive(?M);;: : :end Air Control Sector;Comments: Assume the interfaces of Airplane andControl Center are already de�ned. The connection de�nesevent communication between any airplane and a partic-ular control center as depicted in Figure 1, Section III.Whenever any airplane (a match for ?A) generates a Radioevent containing a message and the InRange predicate ofthat airplane is true in the state when the radio event isgenerated, then SFO will receive a Receive event with thesame message. The connection triggers only when an air-plane is in range.This connection rule is a conditional broadcast betweenall airplanes and the control tower. It de�nes communi-cation in a system that may have varying numbers of air-plane components. It is essentially a fan-in connection. Itimposes dependencies between pairs of Radio and Receiveevents as shown in the poset Figure 2, Section III. In this�gure, nodes are events and directed arcs represent depen-dency. The poset also shows that the Receive events are allindependent. This implies that they could be observed bythe control center concurrently.To illustrate how posets distinguish between di�erent ar-chitectures, we simply change the connection rule in theprevious example to be a pipe instead of a basic connec-tion.Example: Pipelining air tra�c control.architecture PipeLine Control Sector is?A : Airplane; ?M : Msg;SFO : Control Center;connect?A .Radio(?M) where InRange(?A, SFO)=> SFO .Receive(?M);: : :end PipeLine Control Sector;Comments: We have changed the air control sector archi-tecture so that all radio events are observed at the controlcenter through a pipe rule. Essentially, a pipe is used toconnect airplanes and the control center as shown in Fig-ure 3. Now all airplanes communicate with SFO by a singlepipe instead of by broadcast.Pipe connections order the events they generate into alinear dependency sequence. In this case, each generatedevent, SFO.Receive, depends on the ?A.Radio event thattriggered the rule, and all previous SFO.Receive events.

www.manaraa.com

13The SFO.Receive events are all in a linear dependence chain,as shown in Figure 4. This means that messages can onlybe received at the control center one-by-one in their depen-dency order.The semantic di�erences between the broadcast andpipeline architectures are shown clearly by the posets inthe two �gures, 2, 4. Example: Using RS-232 to connect computers andmodemswith Computer, Modem;architecture O�ce isPC : Computer;Mod: Modem;: : :connectPC.S1 to Mod.S; { { bi-directional ow of events.: : :end O�ce;Comments: Following the RS�232 example (Section V),connecting a computer component PC to a modem compo-nent Mod in an o�ce architecture requires a single connec-tion rule between their RS�232 services (Figure 7). Thisconnection expresses a set of 25 basic connections betweenpairs of RS�232 constituents with the same name; in eachconnection the out constituent is the action in the triggerpattern.Example: An Intelligent Network Architecture.An intelligent network is a dynamic architecture whichworks by passing the names of components to other compo-nents. The restrictions on name types (Section V) ensurethat the Network Architecture's connection rules de�ne allpairs of components that may participate directly in datatransfer.There are three types of components: providers, clients,and brokers. The numbers of components of each type canvary (although in our example they are �xed). Providerscan Register with a broker, indicating the service they pro-vide. The broker stores the names of providers (which arecontained in Register events as the actor element) and thejobs they can perform.A client can ask a broker for a provider of a job by call-ing Find Provider. As a result the name of a provider issupplied by the broker to the client { not a provider itself.A client can then use the name of the provider to requesta job. The client cannot dereference the name and get theprovider, and then call the provider directly. A client mustcommunicate a request for a job with the provider's nameto the architecture. The parent architecture is the onlymodule that can dereference the provider's name (in itsconnection rules) and generate the request to the provider.interface Provider isprovides function Do Job(J : Job; P : Parameters)return data;out action Register(J : Job);: : :end;interface Client isrequires { { a list of functionsfunction Request Job(J : Job; P : Parameters;Pn : &Provider)return Data;function Find Provider(J : Job)return &Provider;: : :end;

www.manaraa.com

14
PHONE

DTE/EIA−232D

POWER
POWERJACK LINE

RS−232 service

RS−232 dual serviceFig. 7. An RS-232 connection.interface Broker isprovides function Provider Lookup(J : Job)return &Provider;in action Register Provider(J : Job; P : &Provider);: : :behavior{ { only store one Provider per Job typeJobs : array [Job] of &Provider;?J : Job;?N : &Provider;function Provider Lookup(J : Job)return &Provider isbeginreturn Jobs[J];end;Register Provider(?J, ?N) => Jobs[?J] := ?N;;end;
The broker, client and provider components are declaredin the network architecture (Figure 8). All of the directcommunication among pairs of components is de�ned bythree basic connection rules.

with Broker, Client, Provider;architecture Network isNTT : Broker;clients : array [1..NUM CLIENTS] of Client;providers : array [1..NUM PROVIDERS] of Provider;?P : Provider;?J : Job;?C : Client;?N : &Provider;?param : parameters;connect?P.Register(?J) toNTT.Register Provider(?J, &?P);;?C.Find Provider(?J) toNTT.Provider Lookup(?J);;?C.Request Job(?J, ?param, ?N) to�?N.Do Job(?J, ?param);;end Network;The �rst rule connects any provider's out action Registerwith the broker's in action Register Provider. This is a fan-in rule connecting many providers to a single broker; asyn-chronous actions are used so that providers don't block.The second rule de�nes an alias between a call to aclient's Find Provider function and a call to the broker'sProvider Lookup function; the return value is the name ofa provider. Again, it is fan-in rule connecting many clientsto a broker. Synchronous function call is used becauseclients will need to wait for a return value. (If there weremultiple brokers, this rule could be generalized to alias acall to Find Provider to any broker, the result being one ofthe returned names.)The third rule aliases a call to any client's Request Jobfunction to a call to the Do Job function of the

www.manaraa.com

15
B R O K E R

?C . Request_Job (?J, ?N, ?param) = *(?N) .Do_Job (?J, ?param)

DYNAMIC NETWORK ARCHITECTURE USING

NAME TYPE PARAMETERS

PROVIDER 1

PROVIDER 2

PROVIDER 3

CLIENT 1

CLIENT 2

 highly

 dynamic

communication

 cloud

Register (
?J)

Find_Provider (?J)

Provider_Lookup (?J)

Fig. 8. An intelligent network.provider whose name the client supplies. The ruledereferences the provider name in the client's call andcalls the provider's Do Job function. The rule ex-presses Num Clients � Num Providers connections be-tween pairs of components.Communication integrity implies that these rules de�neall of the direct communication in the Network betweenpairs of clients, providers and the broker. They allow us todraw some conclusions without knowledge of the modulesimplementing these components. For example: (i) sincenone of the connection rules can be triggered by the bro-ker, we know that the broker does not initiate any com-munication. (ii) Only providers can cause the broker'sRegister Provider events. (iii) Clients do not communicatedata directly to clients, and providers do not communi-cate data directly to providers. (iv) transfer of data froma provider to a client has to be caused by a function callfrom a client (i.e., limited junk mail rule).These properties of the network communication couldnot be deduced if the integrity of the connection rules (Sec-tion II-B) could be subverted by passing components, orpointers to components, as parameters of their functionsand actions. The deductions are valid even though com-ponent names are being passed between the components.This is because only the architecture Network may derefer-ence the names of its components (as is done in the thirdconnection rule). Thus, for example, the broker cannot usethe name of providers it stores to communicate with themdirectly. This would not be true if pointers were used inplace of names; the broker could dereference a pointer toa provider and call the provider's functions. In an ordi-

nary programming language we would have to examine theimplementations of all of the components.VII. MappingsEvent pattern mappings (Abbrev: mappings) can beused to de�ne how one architecture is related to anotherone, or how an architecture is related to an interface. Theidea is to de�ne how events in one system correspond toevents in another. In many cases, there is quite a wide dif-ference between systems. For example, when two systemsare at di�erent levels of abstraction many events in one maycorrespond to just one event in the other (as is often thecase in hierarchical design). Patterns provide the necessaryexpressive power to de�ne these kinds of mappings.Maps.A map may be de�ned between any pair of interfaces orarchitectures. Syntax of the map construct is given in Fig-ure 9. The from and to names are names of architecturesor interfaces. Maps may declare local objects .Semantics. Maps have visibility into the declarations oftheir domain (from architecture) and range (to architec-ture). Mapping rules can trigger on events happening atthe top level inside the domain, and generate events at thetop level inside the range. Rules in a mapping have thesame semantics as transition rules in components (or nonbasic connections in architectures) except that they do notde�ne any causal relation between the triggering events(from the domain) and the events they generate (in therange).

www.manaraa.com

16map ::=[with clause]map name from name to name isdeclarationsrulesf rulegend map name ';'rule ::=trigger '=>' f map statement ';'g';'trigger ::= patternmap statement ::= [f state assignmentg][restricted pattern]Fig. 9. map syntax.A. Example: A simple microprocessorThis section gives an example of two Rapide architec-tures for a simple microprocessor and an event patternmapping from one to the other. It shows some of the com-plexities of \real life" applications that require the powerof an event pattern language.The original version of this example in [GL92] consistedof three architectures in VHDL for a simple 16-bit micro-processor at three commonly used design levels of abstrac-tion: instruction level, register transfer level (RTL) andgate level. This work reported the results of using map-pings written in VAL (VHDL annotation language) to con-trol the complexity of the VHDL simulation. The gate levelsimulation for a very small input data sample produced8073 events. Clearly, manual inspection of this amount ofoutput is di�cult and error prone, even though it is verysmall in comparison with industrial simulations. 6 By us-ing VAL mappings to map the gate level architecture tothe (RTL) architecture, and then map the RTL architec-ture to the instruction level architecture, the number ofevents in the mapped simulation was reduced to 5. Designerrors at the gate level and RTL (typically incorrect archi-tecture connections) which are di�cult to detect at thatlevel, were made manifest at the instruction level in theform of missing events.Thus a powerful application of event pattern maps todesign hierarchies lies in mapping complex low level simu-lations into behaviors of a higher level, more abstract ar-chitectures { called the mapped behavior. The mapped be-havior is much smaller and simpler. This has the followingbene�ts:� manual inspection of the mapped behavior is feasible.� formal constraints are generally part of high level ar-chitectures since they embody design requirements;low level simulations can be \mapped up" and auto-matically checked against high level constraints.� errors in the mapped behavior can be traced back tothe low level architecture by analyzing where the trig-6Indeed, industry experience has related instances where large scalegate-level simulations have indicated design errors in microprocessorswhich go undetected in analysis of simulator output, and are onlyuncovered after manufacture (at far greater cost!).

ger patterns of the map matched in producing the highlevel error.Below we give the Rapide RTL architecture of the mi-croprocessor and the mapping to the instruction level. Fig-ure 10 is a picture of the RTL architecture, and Figure 11is a picture of the map from patterns of RTL events to in-structions; it shows the timing relationships between a setof RTL events that would trigger the map, resulting in aload event.The Rapide global clock values are the same at all lev-els in the design hierarchy. In Figure 11 these readingsare shown horizontally at both levels. The RTL patterninvolves 12 events that trigger the mapping for a load in-struction. The arcs show the timing relations between theevents that are required by the trigger | i.e., some eventsare required to occur after others, whereas some may occurin any time order. The CL events, for example, are deviceclock events. There are 4 CL events, de�ning three deviceclock cycles. The trigger requires particular events to oc-cur on each cycle. The shadow of the pattern depicts thesimulation time duration of the load instruction.First, the interfaces of RTL component types (registers,bu�ers, controllers, and logic unit) are given. State transi-tions and constraints are omitted from these interfaces forbrevity. One may assume either that there are state tran-sitions or else an executable gate level architecture for eachof these interfaces. Compilation dependencies between theinterfaces are expressed by with clauses. Some of theseinterfaces could be derived from others by object-orientedfeatures of Rapide [Tea94a].interface TypePreamble istype bit;type bit2 is array [1. .2] of bit;type bit12 is array [1. .12] of bit;type bit16 is array [1. .16] of bit;type operations is (land, lor, lnot, lxor);type states is (if1, if2, if3, if4, ex1, ex2, ld, st);end TypePreamble;{ { interfaces of RTL components.with TypePreamble, Register Logic;interface Register isin action Din(val : bit16),Clk(val : bit),Ce(val :bit),Oe(val : bit),Rst(val : bit);out action Dout(val : bit16);out action Load(r : bit16);out action OE(r : bit16);end Register;interface Two Output Register Logic isin action D(val : bit16),Ce(val : bit),Rst(val : bit),Oe1(val : bit),Oe2(val : bit);out action D1(val : bit16),D2(val : bit16);end Two Output Register Logic;

www.manaraa.com

17
C

I
R

A
E
B

D
I
B

D
O
B

A
C
C

R

[0]

R R R

[1] [2] [3]

16

1

16

12

16

Clk

Ir

Din

Read

Write

Addr

Dout

Clr
1

Rst
1

1

11
Run

A
L
UFig. 10. CPU register level architecture.with TypePreamble, Two Output Register Logic;interface Two Output Register isservice X : Two Output Register Logic;in action Clk(val : bit);out action Load(r : bit2);out action OE1(r : bit2);out action OE2(r : bit2);end Two Output Register;with TypePreamble;interface Bu�er isin action Din(val : bit16),Oe(val : bit);out action Dout(val : bit2);out action output(b : bit16);end Bu�er;with TypePreamble;interface Logic Unit isin action A(val : bit16),B(val : bit16),Op(val : bit2);out action C(val : bit16);out action alu(a,b,c : bit2; op : operation);end Logic Unit;with TypePreamble, Two Output Register Logic;interface Controller isin action op(val : bit2),r1(val : bit2),r2(val : bit2),clr(val : bit),run(val : bit),rst(val : bit),clk(val : bit);

out actionirCE(val : bit),accCE(val : bit),accOE(val : bit),dinOE(val : bit),irRST(val : bit),readOE(val : bit),writeOE(val : bit);service reg [0. .3] : dual Two Output Register Logic;{ { used to report state changesout action state(s : states);behaviorCurrent State : States;: : :end Controller;Next an RTL interface and architecture are given. Thearchitecture, RTL CPU Arch, corresponds to Figure 10.So, for example, ALU in the �gure is a logic unit, C is aController, and R is a bank of four Two Output Registers.The Rapide connections consist of bindings between theRTL interface and architecture, and internal connectionsbetween components { the architecture proper.{ { RTL interface of the microprocessor { see Fig 10.with TypePreamble;interface RTL CPU Interface isin action Clk(val : bit),Rst(val : bit),Run(val : bit),Clr(val : bit),Din(val : bit2),Ir(val : bit16);out action Dout(val : bit2),

www.manaraa.com

18

3 6 10 13 20 23 26 28 30 33 36 40

CL

P4

IL

CL

PL

AE

RE

DE

CL

P1

RL

CL

6 10 13 20 26 28 30 36 40

load (333, R3, AFA0)

Fig. 11. Map from register events to Load instruction.Addr(val : bit12),Read(val : bit),Write(val : bit);end RTL CPU Interface;For simplicity, if the parameter pro�les of the patternson both sides of the \to" are equivalent and what is wantedis that the parameter values of the left pattern be copiedinto the corresponding positions of the right patterns, weallow the parameter list to be omitted from both sides.This convention is used in the following architecture.{ { RTL architecture corresponding to the �gure.with TypePreamble, Register, Two Output Register,Bu�er, Logic Unit, Controller;architecture RTL CPU arch forRTL CPU Interface is
DIB, DOB,AEB : Bu�er;IR, ACC : Register;R : array [0. .3] of Two Output Register;ALU : Logic Unit;C : Controller;?b1 : bit;?i : integer;connect{{ input bindingsDin to DIB.din;Ir to IR.din;Clk to R[0].clk, R[1].clk, R[2].clk, R[3].clk,ACC.clk, C.clk, IR.clk;Clr to C.clr;Run to C.run;Rst to C.rst;{ { architecture connections.

www.manaraa.com

19C.dinOE to DIB.OE;DIB.dout,ACC.Dout to R[0].X.din, R[1].X.din,R[2].X.din, R[3].X.din;R[?i].D1 to ALU.A, DOB.Din;R[?i].D2 to ALU.B;{ { The following connection connects each service of the{ { controller to the service of the corresponding register{ { in the register bank. This is equivalent to 28 basic{ { connections between pairs of actions.C.reg[?i] to R[?i].X;ALU.D to ACC.Din;C.accCE to ACC.CE;C.accOE to ACC.OE;IR.dout(?b16) to ALU.op(?b16[7. .8]),C.op(?b16[1. .2]), C.r1(?b16[3. .4]),C.r2(?b16[5. .6]), AEB.din(?b16[5. .16]);C.writeOE to DOB.OE, AEB.OE;C.irCE to IR.CE;C.irRST to IR.Rst;{ { output bindings.C.readOE to Read;C.writeOE to Write;AEB.dout to Addr;DOB.dout to Dout;end RTL CPU arch;These connection rules have a particularly simple event-based semantics since they are all basic connections de�n-ing equivalences between single events. There are noguards, so the architecture is static. Each connectionmeans that whenever a given component generates an out-put event then the corresponding component will receivean (equivalent in dependency and time) input event. Theyde�ne equivalences between pairs of single events.The component interfaces also de�ne dependencies be-tween input and output events by state transition rules(which we have omitted) or by their underlying gate-levelarchitectures. So, when this Rapide architecture is exe-cuted in response to some input, it will generate a posetof events that gives the dependencies between events gen-erated by the components as well as their timestamps ac-cording to the Rapide global clock (see Figure 11).In VHDL one must declare the connecting wires (calledsignals) and bind each component's ports (ports in VHDLcorrespond to actions in Rapide) to the wires. Here,Rapide basic connections allow us to de�ne the \connect-ing wires" directly. Also, Rapide interface services areused to de�ne 20 connections between the controller andthe register bank in one connection rule. The same archi-tecture in VHDL given in [Gen91] took approximately 170lines of VHDL to specify whereas it took less than 30 lineshere. Since errors in architecture connections are common,it is important to develop succinct notation for them.Below, we give the microprocessor instruction level in-terface showing some of the instructions and the mappingSimRef. The SimRef maps �nite sets of RTL events (thosematching its triggers) to single events at the instructionlevel. So we expect an RTL behavior to be mapped to a

much simpler instruction level behavior. In this example,the SimRef trigger uses only the timing relation betweenevents; it does not use causality.{ { CPU instruction set.with TypePreamble;interface Instruction Level CPU isout action Load(a : bit12; r : integer; d : bit2);out action Store(a: bit12; r : integer; d : bit2);out action Exec(d1, d2 : bit2; s1, s2 : integer;d3 : bit2; op : operations);end Instruction Level CPU;{ { Event pattern mapping.with TypePreamble;map SimRef from RTL cpu archto Instruction Level CPU is?reg,?reg1,?reg2 : register;?a : bit12;?r,?s1,?s2,?s3 : integer;?d,?d1,?d2,?d3 : bit2;?i : bit16;?op : operation;function instrF(val : bits2) return states is: : :function regname(val : Register) return integer is: : :rules{ { mapping rule de�ning Load instruction.Clk(1)< (Ir.Load(?i) where instrF(?i)= ld and C.State(if4))< Clk(1)< (AEB.Oe(?a) where (?a = ?i[5. .16]) andRead(1) and DIB.Output(?d) and C.State(ld))< Clk(1)< (?reg.load(?d) where ?r = regname(?reg) andC.state(if1))< Clk(1)=> Load(?a, ?r, ?d);{ { mapping rule de�ning Store instruction.clk(1)< (IR.load(?i) where instrF(?i) = st and C.state(if4))< clk(1)< ((?reg.OE1(?d) where ?r = regname(?reg)< DOB.OE(?d)) andAEB.OE(?a) where ?a = bits(5,16,?i) and write(1)and C.state(st))< clk(1)< C.state(if1)< clk(1)=> store(?a, ?r, ?d);{ { mapping rule de�ning Exec instructionclk(1)< (IR.load(?i) where instrF(?i) = ex and C.state(if4))< clk(1)

www.manaraa.com

20< (?reg1.OE1(?d1) where ?s1=regname(?reg1)and ?reg2.OE2(?d2) where ?s2=regnameand C.state(ex1) and ALU.ALU(?op))< clk(1)< (Acc.load(?d3) and C.state(ex2))< clk(1)< (?reg.load(?d3) where ?s3=regname(?reg)and C.state(if1))< clk(1)=> exec(?d1,?d2,?s1,?s2,?d3,?s3,?op);end SimRef;In de�ning a map, it is important to specify the triggerof each rule so that it triggers on posets of low level eventsthat are su�cient to signify the corresponding high levelevent. If the triggers can match some subset such as theupper or lower bound events of the appropriate posets, themapped behavior will not be correct, but may contain ex-traneous events. Patterns provide a powerful and succinctnotation for specifying su�cient posets.The Load rule, for example, speci�es the RTL eventswhich correspond to an instruction level Load event. Anyclock event with a parameter of 1 (indicating a rising edgeof the device clock) may initiate a Load behavior. On the�rst clock cycle the instruction register Ir must load a in-struction whose instruction �eld indicates a Load and thecontroller C must transition to state if4. On the secondclock cycle the address enable bu�er AEB must output aparticular address value ?a which is extracted from the in-struction loaded in the previous cycle, the processor mustoutput a Read, the Data In Bu�er DIB must output data?d, and the Controller must transition to a ld state. On thethird clock cycle a register (any one in the register bank)must execute a Load of the data ?d output by the DIBin the previous cycle and the Controller must transitionto state if1. When that clock cycle completes, this posetmaps to a Load instruction which indicates the data ?d wasloaded from address ?a into register ?r.The above mapping rules de�ne completely the set ofRTL events together with their timing which correspondto the instruction level events. Since causality is not ex-pressed in the triggers (because this example is taken fromVHDL) the mapping rules are not su�cient. For example,it would be possible, for some set of RTL events with thecorrect timing to trigger a load mapping rule when a loadinstruction is not executed.VIII. History and status of RapideRapide has evolved from several sources: (a)VHDL (for event-based and architecture concepts), (b)ML [MTH90] and C++ [ES90] (for type systems), and (c)TSL [LHM+87] (for event patterns and formal constraintson concurrent behavior expressed in terms of patterns ofevents).The evolutionary steps can be summarized as follows.First, Rapide departs from previous event-based languagesin adopting the partially ordered set of events (poset) exe-cution model in place of linear traces of events. Simulations

in Rapide produce posets. The concept of posets has beendescribed by Fidge [Fid88], and Mattern [Mat88], and wasprobably extant in the database literature since the 19700s.The �rst studies to our knowledge of the feasibility of imple-menting simulation languages to produce poset executions,and to check them for constraint violations, were done in-dependently on the Rapide-0.2 project [Bry92],[MSV91],and the OEsim project [AB91].Secondly, there are many event-based reactive languagesin existence; a few of the ones that we have studiedare VHDL [VHD87], Verilog [TM91], LOTOS [BB89],CSP [Hoa78], and Esterel [BCG87]. Most of these lan-guages have simple forms of event patterns for triggeringprocesses | e.g., VHDL has sensitivity lists which are dis-junctions of events, and LOTOS has basic events with pred-icate guards. In Rapide we have introduced more power-ful event patterns, as is appropriate for specifying posets.Event patterns play a basic role in features for de�ningboth reactive behaviors and formal constraints. Patternmatching concepts go back at least to the uni�cation al-gorithm in Resolution theorem-proving [Rob65], and theiruse in AI languages is typi�ed in Planner [Hew71] and Pro-log [CM84].Third, the concepts of interface in Ada (packagespeci�cation) and VHDL (entity interface), both ofwhich we extended with formal annotations in priorwork [Luc90], [ALG+90], have been extended to interfacetypes in Rapide with a capability to specify concurrentbehavior. In these earlier languages, interfaces were nottypes. Interface types can inherit from other types usingobject-oriented methods, and are related by a notion ofstructural subtyping [KLM94]. Much research is yet to bedone on interface design and the interplay between subtyp-ing and well-formedness of architectures.Fourth, VHDL provided us with the best previous modelof \architecture" which is a wiring of interfaces, totallyseparated from a binding of interfaces to implementations(con�gurations). Structural connections in VHDL, ex-pressed by port maps that bind the ports of componentinterface instances to signals in an architecture, are gener-alized in Rapide to event pattern connection rules. Thisfeature allows dynamic architectures.Finally, event patterns are used in Rapide to de�nemappings between architectures, thus allowing for hierar-chical and comparative simulation, as described in our ear-lier work on VAL+ [GL92].At present a simulation toolset for Rapide-1.0 is be-ing tested on industrial examples of software and hard-ware architectures of moderate complexity. The simulatorproduces posets. Analysis tools display simulator outputgraphically, automatically check output for violations offormal constraints, and allow simulations to be animatedon pictures of the architecture that is being simulated. In-put tools are being constructed to allow architectures to beinput in various formalisms and translated to Rapide. Theeventual goal is to develop an industry scale toolset.

www.manaraa.com

21AcknowledgementsOur thanks are due to many people who have collab-orated in experiments with various versions of Rapideand its toolset. Especially, our thanks are due to JohnMcHugh and John Munson (University of North Carolinaand TRW), and members of the Rapide design team: JohnKenney, Doug Bryan, Walter Mann, Alexandre Santoro,and Larry Augustin (Stanford), Sigurd Meldal (Universityof Bergen), and Frank Belz and Holly Hildreth (TRW).References[AB91] Tod Amon and Gaetano Borriello. OEsim: A simula-tor for timing behavior. ACM/IEEE Design AutomationConference, 28(1):656{661, June 1991.[Ada94] Intermetrics Inc., Cambridge, Mass. Ada 9X ReferenceManual, June 1994. ANSI/ISO Draft International Stan-dard.[ALG+90] Larry M. Augustin, David C. Luckham, Benoit A. Gen-nart, Youm Huh, and Alec G. Stanculescu. Hardware De-sign and Simulation in VAL/VHDL. Kluwer AcademicPublishers, October 1990. 322 pages.[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISOspeci�cation language LOTOS. In van Eijk et al, editor,The Formal description Technique LOTOS, pages 23{73.North-Holland, 1989.[BCG87] G. Berry, P. Couronne, and G. Gonthier. Synchronousprogramming of reactive systems: an introduction to Es-terel. Technical Report 647, INRIA, Paris, March 1987.[Bry92] Doug Bryan. Rapide{0.2 language and tool-set overview.Technical Note CSL{TN{92{387, Computer SystemsLab, Stanford University, February 1992.[CM84] W. F. Clocksin and C. S. Mellish. Programming in Prolog.Springer-Verlag, second edition, 1984.[ES90] Margaret A. Ellis and Bjarne Stroustrup. The AnnotatedC++ Reference Manual. Addison-Wesley, 1990.[Fid88] Colin J. Fidge. Timestamps in message-passing systemsthat preserve the partial ordering. Australian ComputerScience Communications, 10(1):55{66, February 1988.[Gen91] B.A. Gennart. Automated Analysis of Discrete EventSimulations Using Event Pattern Mappings. PhD the-sis, Stanford University, April 1991. Also Stanford Uni-versity Computer Systems Laboratory Technical ReportNo. CSL{TR{91{464.[GL92] Benoit A. Gennart and David C. Luckham. Validatingdiscrete event simulations using event pattern mappings.InProceedings of the 29th Design Automation Conference(DAC), pages 414{419, Anaheim, CA, June 1992. IEEEComputer Society Press.[Gro91] The Object Management Group. The Common ObjectRequest Broker: Architecture and Speci�cation. The Ob-ject Management Group, revision 1.1 edition, December1991.[Hew71] Carl Hewitt. Description and Theoretical Analysis ofPlanner. PhD thesis, MIT, 1971.[Hoa78] C. A. R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666{677, August1978.[KLM94] Dinesh Katiyar, David Luckham, and John Mitchell. Atype system for prototyping languages. In Proc. 21-stACM Symp. on Principles of Programming Languages,Portland, 1994.[LHM+87] David C. Luckham, David P. Helmbold, Sigurd Meldal,Douglas L. Bryan, and Michael A. Haberler. Task se-quencing language for specifyingdistributedAda systems:TSL-1. In Proceedings of PARLE: Conference on Paral-lel Architectures and Languages Europe. Lecture Notesin Computer Science. Number 259, Volume II: ParallelLanguages, pages 444{463, Eindhoven, The Netherlands,15{19 June 1987. Springer-Verlag.[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin,James Vera, Doug Bryan, and Walter Mann. Speci�ca-tion and analysis of system architecture using Rapide.IEEE Transactions on Software Engineering, 21(4):336{355, April 1995.

[Luc90] David C. Luckham.Programming with Speci�cations: AnIntroduction to ANNA, A Language for Specifying AdaPrograms. Texts and Monographs in Computer Science.Springer-Verlag, October, 1990.[LVB+93] David C. Luckham, James Vera, Doug Bryan, Larry Au-gustin, and Frank Belz. Partial orderings of event setsand their application to prototyping concurrent, timedsystems. Journal of Systems and Software, 21(3):253{265, June 1993.[LVM] David C. Luckham, James Vera, and Sigurd Meldal.Three concepts of system architecture. submitted to theCommunications of the ACM.[Mat88] F. Mattern. Virtual time and global states of distributedsystems. In M. Cosnard, editor, Proceedings of Paralleland Distributed Algorithms. Elsevier Science Publishers,1988. Also in: Report No. SFB124P38/88, Dept. of Com-puter Science, University of Kaiserslautern.[MSV91] Sigurd Meldal, Sriram Sankar, and James Vera. Exploit-ing locality in maintaining potential causality. In Proceed-ings of the Tenth Annual ACM Symposium on Principlesof Distributed Computing, pages 231{239, New York, NY,August 1991. ACM Press. Also Stanford University Com-puter Systems Laboratory Technical Report No. CSL{TR{91{466.[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Def-inition of Standard ML. MIT Press, 1990.[Rob65] J.A. Robinson. A machine-oriented logic based on theresolution principle. Journal of the ACM, 12(1):23{41,January 1965.[Tea94a] Rapide Design Team. The Rapide-1 Executable LanguageReference Manual. Program Analysis and Veri�cationGroup, Computer SystemsLab., StanfordUniversity, ver-sion 1 edition, October 1994.[Tea94b] Rapide Design Team. The Rapide-1 Speci�cation Lan-guage Reference Manual. Program Analysis and Veri�ca-tion Group, Computer SystemsLab., StanfordUniversity,version 1 edition, October 1994.[Tea94c] Rapide Design Team. The Rapide-1 Types ReferenceManual. ProgramAnalysis and Veri�cation Group, Com-puter Systems Lab., Stanford University, version 1 edi-tion, October 1994.[TM91] D. E. Thomas and P. R. Moorby. The Verilog hardwaredescription language. Kluwer Academic Publishers, 1991.[VHD87] IEEE, Inc., 345 East 47th Street, New York, NY,10017. IEEE Standard VHDL Language Reference Man-ual, March 1987. IEEE Standard 1076{1987.[XoD92] X/Open Company Ltd., Apex Plaza, Forbury Road,Reading, Berkshire RGI 1AX, U.K. Distributed Trans-action Processing: The Peer{to{Peer Speci�cation, De-cember 1992. Snapshot.

