An Event-Based Architecture Definition
Language
David C. Luckham, James Vera

Abstract— This paper discusses general requirements for
architecture definition languages, and describes the syntax
and semantics of the subset of the RAPIDE language that is de-
signed to satisfy these requirements. RAPIDE is a concurrent
event-based simulation language for defining and simulating
the behavior of system architectures. RAPIDE is intended for
modelling the architectures of concurrent and distributed
systems, both hardware and software. In order to repre-
sent the behavior of distributed systems in as much detail
as possible, RAPIDE is designed to make the greatest posi-
ble use of event-based modelling by producing causal event
simulations. When a RAPIDE model is executed it produces
a simulation that shows not only the events that make up
the model’s behavior, and their timestamps, but also which
events caused other events, and which events happened in-
dependently.

The architecture definition features of RAPIDE are de-
scribed here: event patterns, interfaces, architectures and
event pattern mappings. The use of these features to build
causal event models of both static and dynamic architec-
tures is illustrated by a series of simple examples from both
software and hardware. Also we give a detailed example of
the use of event pattern mappings to define the relationship
between two architectures at different levels of abstraction.
Finally, we discuss briefly how RAPIDE is related to other
event-based languages.

Keywords— Rapide, architecture definition languages, par-
tially ordered event sets, architecture, prototyping, concur-
rency, simulation, formal constraints, event patterns, causal-
ity.

I. INTRODUCTION

RaPIDE [LVB193], [LKAT95] is an ezecutable architec-
ture definition language (EADL). Although it has many
of the features of present-day event-based simulation lan-
guages, it also provides new features to represent system
architecture (see, e.g., [LVM]).

In this paper we first describe design requirements for
EADLs. The architecture definition features of RAPIDE
are then presented. Their semantics are described in terms
of causal event executions and illustrated by a series of
simple examples. We show how these features can be used
to model the behavior of both static and dynamic archi-
tectures. We also show how mappings can relate widely
different architectures, one at a high level of abstraction
and another at a much more detailed level. Finally, we
give a brief history of RAPIDE and the current status of its
supporting toolset.

Other features of RAPIDE are described in other papers:
these are object-oriented features for deriving new interface
types and modules from previous ones [KLM94], [Tea94c],
concurrent reactive programming constructs [Tea94a], and
formal constraints [Tea94b]. An earlier version of RAPIDE

This project is funded by DARPA under ONR contract NO0014-92-
J-1928 and AFOSR under Grant AFOSR91-0354

was outlined in [LKA195], and its use to model one
large-scale example, the X/Open DTP standard architec-
ture [XoD92] standard was described. In that paper we
discussed how mappings, in conjunction with formal con-
straints, can be used to test conformance of systems to
architectural standards.

The current simulation toolset for RAPIDE has been built
for modelling and simulation of architectural designs during
the early phases of system development, and also for testing
conformance of systems to architectural designs.

II. FEATURES FOR DEFINING ARCHITECTURE

There is now a widespread belief that software engineer-
ing must go beyond object oriented methods to a new tech-
nology based upon “architecture”. Technologies such as
CORBA [Gro91], for example, allow distributed systems
of interacting modules to be wired together. However, an
architectural plan of the system is needed to both guide
the “wiring-up” and to prototype the behavior of the sys-
tem before effort is put into building the modules (i.e., the
system’s components).

An architecture in RAPIDE is an executable specification
of a class of systems. It can be at any level of abstrac-
tion. An architecture consists of interfaces, connections,
and constraints. The interfaces specify the behavior of
components of the system, the connections define the com-
munication between components using only the features
specified in their interfaces, and the constraints restrict the
behavior of the interfaces and connections. This is called
an interface connection architecture [LVM] since the com-
munication between system components is defined by con-
nections between their interfaces. When a RAPIDE archi-
tecture is executed it produces a causal event history which
is automatically checked for conformace to constraints.

Interface connection architectures can be built quickly
in RAPIDE. They have two main purposes. First, to build
with relatively little effort, a prototype that enables one to
study and predict behavior before effort is put into building
a full system. Second, to define a “plan” or “framework”
to guide construction of a system, possibly by automated
synthesis methods. To achieve these goals,

o RAPIDE must be powerful enough to define interface
connection architectures that can be executed and
their properties measured,

o the system, when it is built, must conform to the ar-
chitecture.

A. Requirements for ADLs

The requirement of “sufficient power” leads us to the
following general principles to be satisfied by the RAPIDE

www.manaraa.com

design.

o Component abstraction: Interfaces, which are the fea-
ture in RAPIDE for component abstraction, should define :
(i) the facilities provided and the facilities required by
a component, (it} the component’s behavior in a form al-
lowing execution and analysis.

Interfaces in languages such as Ada [Ada94] (e.g., task
types and package specifications), the public parts of C++
classes, or entity interfaces in VHDL [VHDS87], specify only
the signatures of their provided facilities (e.g., functions,
task entries or ports). None define features they require
from other components, nor do they define behavior inde-
pendently of a module instance.

o Communication abstraction:

Connections, which are the feature in RAPIDE for defin-
ing the communication between components, should (i) use
only the interfaces of components, and (ii) define commu-
nication in a form allowing execution and analysis.

In programming languages, although interfaces restrict
the visibility into modules, communication between mod-
ules 1s implemented in the modules. For example, commu-
nication is represented by function calls buried in classes
(C++) or package bodies (Ada), or task entry calls buried
in task bodies (Ada). Communication is implemented but
there 1s no communication abstraction.

On the other hand, hardware simulation languages do
provide communication abstraction, but only for static ar-
chitectures. In VHDL, for example, communication be-
tween entity interfaces is defined in structural architectures
by port maps that wire interfaces together. Separate con-
figurations associate entity bodies (modules) with inter-
faces in an architecture; different configurations define dif-
ferent implementations of an architecture, but the commu-
nication is defined once in the architecture for all possible
configurations of it. Similarly, static connections between
a fixed number of component interfaces are expressed in
Verilog [TM91] by parameter bindings.

o Communication integrity: Interfaces may communi-
cate directly only if there is an architecture connection be-
tween the interfaces.

This requires the architecture’s connections to define all
the direct communication between pairs of interfaces. It
is possible for two unconnected interfaces to communicate
through a third interface — this is called indirect communi-
cation.

o Dynamicism: RAPIDE should be capable of modelling
architectures of dynamic systems in which the number of
components and connections may vary when the system 1is
ezecuted.

o Causality and Time: RAPIDE should be capable of cx-
pressing casual dependency and independency between be-
haviors of interfaces and connections, and their timing.

These two requirements are forced by the wealth of dy-
namic and distributed systems where architecture defini-
tion and modelling has become a primary issue. Many
event=basedimodelling languages providersimulation time-
stamps and determinisitic event interleaving. Concurrency
18 thereby expressed inl simulation results, but dependence

and independence of behaviors is not. Moreover, current
ADL’s cannot model dynamic systems.

o Hierarchical Refinement: RAPIDE should allow both
components and connections in an architecture to be re-
placed by (sub)architectures to form new architectures.

This 1s a requirement that is needed to allow hierarchical
design methodologies as currently practiced in many areas
(e.g., hardware or protocols), to be applied to architecture
modelling. Most programming and simulation languages
support hierachical refinement of components, generally by
allowing an interface to be implemented by a module con-
taining a set of submodules. We require connections also
to be refinable into architectures.

o Relativity: RAPIDE should provide features for inter-
preting the behavior of one architecture as behavior of an-
other architecture or an interface.

This requirement is more general than, and complemen-
tary with, hierarchical refinement. When architectures,
often for the same system, are defined at different lev-
els of abstraction, they tend to differ widely in the kinds
and numbers of components and the types of data being
communicated. Current technology does not provide any
means to explicitly define the relationships between such
architectures. Here, we require RAPIDE to provide features
for relating architectures. Such features have several appli-
cations — e.g., by relating architectures at different levels
of abstraction, one architecture may serve as a constraint
on the other. We illustrate this in Section VII.

B. Conformance to Architecture

A system “has” an architecture if it conforms to it; con-
versely a RAPIDE architecture is a constraint on systems.
There are three basic conformance criteria:

1. decomposition : for each interface in the architec-
ture there should be a unique module corresponding
to it in the system (i.e., the component implementing
that interface).

2. interface conformance: each component in the sys-
tem must conform to its interface. Since behavioral
constraints can be part of RAPIDE interfaces, this con-
formance requirement is stronger than the syntactic in-
terface conformance usually required by programming
languages.

3. communication integrity: the system’s compo-
nents communicate directly only as specified by the
interface connections of the architecture.

A system must conform to an architecture in order that
the architecture can be used to predict the system’s be-
havior or to decide various issues about maintaining and
modifying the system (see [LVM]).

How to test or prove that a system conforms to an archi-
tecture 1s beyond the scope of this paper. There are style
guidelines for using RAPIDE to help ensure communication
integrity. One guideline requires components to access only
their own interface constituents to communicate with other

IMappings discussed later allow a more sophisticated decomposi-
tion between a single interface and a subsystem of components.

www.manaraa.com

components. This helps to ensure that all direct commu-
nication between components is by interface connections.
Also, the types of objects that can be communicated must
be restricted — e.g., only immutable objects — to prevent
communication trojan horses.

I1I. CausarL EVENT SIMULATION

RAPIDE is an event processing language. Events are sim-
ply tuples of information containing, e.g., who generated
the event, what activity was done, data values, the time
and duration, etc. The semantics of RAPIDE are defined
in terms of event processing — generating events, send-
ing events from one component to another, and observing
events. Components have the ability to generate events
independently of one another. Asynchronous communica-
tion is modelled by connections that react to events gen-
erated by components and then generate events at other
components; the events reacted to cause the events gen-
erated by a connection. Causality between events is also
modelled by reactive behaviors of components. In addi-
tion, synchronous communication can be modelled by con-
nections between function calls. The result of executing a
RAPIDE architecture (a set of interfaces and connections)
is a poset 2 showing the dependencies and independencies
between events.

Let us start with some intuitive examples of how posets
capture the semantics of communication architectures.

The components in figure 1 are airplanes and a con-
trol tower. Connections between them are depicted by
The intuitive semantics of this picture are that
airplanes can generate Radio events containing data which
cause Receive events containing the same data that can be
observed by the control tower. When this architecture is
defined in RAPIDE and executed, a typical resulting poset
is shown in figure 2. Here, events are depicted as nodes
and dependencies between events as directed arcs. The
poset shows that airplanes, Al, A2, A3, A4 have generated
Radio events independently, and that each Radio caused a
Receive event at the control tower, SFO; also the Receive
events are independent, so SFO may observe them in any
order, possibly concurrently. Timestamps and other infor-
mation are also contained in events.

arrows.

A variant of this architecture may require all commu-
nication to the control tower to be pipelined as shown in
figure 3. Here, airplanes are connected to the control tower
by a pipeline connector component which orders events it
receilves into a sequence which 1s then received by the tower.

When this architecture in figure 3 is executed, resulting
posets show additional dependencies due to the pipeline
connector; all Receive events are ordered into a linear de-
pendency sequence. This implies that the Receive events
are observed one-by-one at SFO in their dependency order.

The semantic differences between the broadcast and
pipeline architectures are shown clearly by the posets in
the two figures, 2, 4. Trace-based simulation languages
do not capture event dependencies and would produce the

2Partially Ordered Set of Events.

same event trace for these two architectures.

IV. EVENT PATTERNS

Event patterns are expressions used in defining behaviors
of components, connections, and mappings between archi-
tectures. They are fundamental in representing dynamic
architectures.

An action is defined by an action name, a, and a finite
list of types, < 1,ts,...1, > called the signature of a. An
event of action a is a tuple of information with a unique
event identifier. The event contains the action name, a,
data objects of the signature types, and certain other in-
formation such as the component that generated it, or the
component that is the destination of the event, the event’s
timestamps and dependency history. We use a tuple nota-
tion, a(vy,...,v,), for events. An event’s identifier is not
part of the tuple notation. Distinct events may have the
same tuple.

Event patterns (or simply, patterns) are expressions that
define sets of events and their dependency and timing re-
lationships (i.e., posets).

Syntaz
pattern ::= basic_pattern
| pattern binary_pattern_operator pattern
| pattern 7 2 iterator_operator
binary_pattern_operator)’
-- which we print as
_ patteTniterator_operator binary_pattern_operator
| pattern where guard
| 2’ placeholder_list 7:> pattern 7)’
| 2(’ pattern 7)?
pattern during ’(’ expression ’,’
erpresston)’
binary_pattern_operator ::= ’=>’ —-- printed as —
| 211’ | and | or | ’~?
iterator_operator ::= Y%7 | 42
| integer_expression
guard ::= boolean_cxpression

basic_pattern ::= [performer_part *.’]
action_part [?(’ parameter_association ’)’]

performer_part ::= componeni_expression

action_part ::= action_name

| type_expression ’::’action_name

Semantics

RAPIDE uses two special kinds of variable. The first is
called a placeholder. Placeholder names always begin with
a “?7” to distinguish them from variable names which al-
ways begin with an alphabetic character. Placeholders are
typed and declared the same way as ordinary variables, and
they can be used similarly to build expressions. However,
they differ from ordinary variables in that they can only be
bound to an object as a result of pattern matching (below).

www.manaraa.com

Broadcast Communication

Fig. 1.

A broadcast architecture.

A3.Radio (M3)

SFO.Receive (M1)

SFO.Receive (M2)

SFO.Receive (M3)

SFO.Receive (M4)

Event Dependencies in Broadcast Connection

A2.Radio (M2)

A4.Radio (M4)

Fig. 2. Broadcast events.

The other kind of special variable is an iterator. An it-
erator 1s a universal quantifier over a type. Iterator names
always begin with a “!” to distinguish them from ordi-
nary variables and placeholders. Iterators are typed and
declared the same way as ordinary variables. They differ
from ordinary variables in that they may not be assigned

values. A pattern containing an iterator is equivalent to
the conjunction (and) of the instances of the pattern with
the iterator replaced by each object of its type. Iterators
are important in defining “fan out” connection rules (see

Section VI).

The process of deciding if a given poset matches a pattern

www.manaraa.com

Pipeline Communication

Fig. 3. A pipeline architecture.

A3.Radio (M3)

SFO.Receive (M1)

SFO.Receive (M2)
SFO.Receive (M3)

SFO.Receive (M4)

Event Dependencies in Pipeline Connection

A2.Radio (M2)

A4.Radio (M4)

Fig. 4. Pipeline events.

is called pattern matching. This can be defined formally
as a recursive function taking as arguments a pattern and
a finite poset. That is, given a pattern PatEzp and a
fintesposetmPossatheresissanrecursivelysdefined algorithm
for finding a type-correct binding 5 of each placeholder to
an object such that PatExp | B matches Pos, according to

the clauses below; PatFap | B is the instance of PatEap
that results when each placeholder 1s replaced at all of its
occurrences by its binding in B.
If PatEap is a basic pattern, then Pos = PatEap | B.
If PatExp is a composite event pattern, built up from
event patterns, P, P’ and a pattern operation, then Pos

www.manaraa.com

matches it if Pos is the union of the matches for P and P’
under the same binding of placeholders, 5, as follows:

1. dependent: P — P'. Posis amatchif all of the events
in the match for P’ depend on all of the events in the
match for P.

2. both: P and P’. Pos is a match if there are matches
for patterns P and P’.

3. distinct: P ~ P’. Pos is a match if all of the events
which matched P are distinct from the events which
matched P’

4. either: P or P’. Pos is a match if there is a match
of pattern P or a match of pattern P’ (in this case a
match for both patterns is not needed).

5. independent: P || P'. Pos is a match if none of the
events which matched P are dependent on any of the
events which matched P’ and vice-versa.

6. after: P < P’. Pos is a match if all of the events
which matched P have timestamps (according to the
RAPIDE clock) less than those of all of the events which
matched P’

7. wteration: PP °P ig shorthand for the pattern built
up from exp copies of P and the operation op where
exp is one of * (zero or more), + (one or more), or n
(exactly integer n copies), and op is any of the preced-
ing binary operations.

8. guarded pattern: PwhereE. Pos is a match if it
is a match of P and the boolean expression E is true
when Pos is observed by the component or architecture
containing the pattern (see Section V).

Eramples

Simple Patterns
Here are some simple patterns and descriptions of the
posets which would match them.

A(?) and B(7i);
—— An A event and a B event with the same parameter.
A - B;
—-— An A event and a B event which depends on the A event.
A < B;
—— An A event and a B event which is temporally later
—— than the A event.
A(?1) where 1 > 4;
—— An event whose parameter is greater than 4.

An iterator
with Sender, Receiver;

?s : Sender;
Ir : Receiver;
?d : Data;

- A.c.(.mnectz'on rule.
?s.Send(?7d) => !r.Receive(?d);;

Comments: The connection rule is triggered by any poset
that matches the left side pattern — an event in which a
sender generates a send of some data. Both 7s and 7d
are bound by the match. The right side restricted pattern
isithienrexecuted: " Thisresultstinteventsiin which every re-
ceiver object in the system (i.e., every match for Ir) receives
the same data, ?d.

Discussion: Patterns are used in interfaces to define be-
haviors, and in architectures to define connections. For
example, a pattern may be used in an interface to define
concurrent behavior consisting of several events being gen-
erated simultaneously.

Patterns are used in three ways.

1. to recognize (or trigger on) posets with particular fea-
tures.

2. to specify constraints on posets, thus constraining be-
haviors.

3. to generate posets in response to a trigger, thus gen-
erating behaviors.

In the first two applications the most general patterns may
be used. but in the third use, the pattern must fully specify
a poset. This means, for example, that it can’t be an “or”
of two posets. So only restricted patterns can be used to
generate behaviors.

V. INTERFACES

An interface defines a type of components. It provides
an abstract definition of externally visible behavior — i.e.,
the behavior that is visible to, and may be observed by, an
architecture containing those components. An interface de-
fines (i) the kinds of events that a component can observe
or generate, (ii) the functions it provides to other compo-
nents or requires from other components, (iii) its states
and state transitions, and (i) constraints on its external
behavior. In general, components can be small static val-
ues (e.g., integers) or large dynamic systems with varying
state (e.g., airplanes). Interface types provide component
abstraction (Section IT).

Structure of interface types

The syntax structure of interfaces is outlined in Figure 5.
(“4 X }” means a list of 0 or more X’s, and “[X']” means
Xis optional.) Standard Pascal-like types (Boolean, string,
integer, array, record etc., but not pointers) are assumed
here without definition. These are called the Procrustean
types. 3 In RAPIDE name types (below) are used instead of
pointers.

type_declaration ::=
type identifier is interface_expression
winterface_expression =
interface
{ interface_constiluent }
end [interface]

2.9
’

3 After Procrustes, a villainous son of Poseidon in Greek myth who
altered the size of visitors to fit his facilities.

www.manaraa.com

interface_constituent ::=
provides { object_name_declaration }
| requires { object_name_declaration }
| in action { action_declaration }
| out action { action_declaration }
| service { service_declaration }
| behavior
[declaration_list]
begin
{ stale_transition_rule }
| constraint pattern_constraint_list

action_declaration ::=
name [name-list 7 type_name
{7, name_list ?:’type_name}?)’]

service_declaration ::=
name [P0 expr >..7 expr ’1°]
»:2 [dual] interface_type_name

declarations ::=
Procrustean type, object and function declarations,
placeholder, iterator, and name declarations

state_transition_rule ::=
trigger commection_op transition_body ’;;’

conmection_op ::= ‘=>¢ | |[>¢

trigger ::= pattern -- see Section IV

| boolean_expression

constraint ::= pattern ’;’

transition_body ::= {state assignment}
[restricted_pattern]

Fig. 5. Outline of interface syntax.

Many features are omitted from this overview. For ex-
ample, interface type declarations can have type and object
parameters (thus allowing polymorphic types), can inherit
from other type declarations, and can refer to seperately
compiled units.

Semantics of interfaces

An interface defines a type of object called a module.
Modules that conform to an interface belong to its type.
If an interface is a component of an architecture then a
module of the interface’s type can be a component of a
system that conforms to that architecture. The module
corresponds under the decomposition principle (Section II-
B)to that interface. The architecture is called the parent
of the interface, and the system is called an instance of the
architecture.

First we describe how interfaces are used to define com-
munication between modules of a conforming system.

An interface declares sets of prowvides, requires, action
andrservice constituentsi Thoserinterface constituents are
visible to the parent architecture. Other components of the
architecture can be wired up (by connections, Section VI)

to those interface constituents. Thus communication be-
tween interfaces 1s defined by the connections.

Object name declarations are declarations of objects of
procrustean types (e.g, integers, arrays, etc.), interface
types or function types. A module conforming to the inter-
face must provide the objects and functions named in the
provides constituents. Thus, for example, other compo-
nents can be connected to call its provided functions. Con-
versely, a module may call requires functions of its interface
and assume they are connected to call provided functions
of other components. Connections between required and
provided functions define synchronous communication.

An interface specifies the types of events its modules can
observe and generate by declaring, respectively, in and out
actions. Connections in the parent architecture can call
the n actions of a module’s interface, thus generating in
events which the module can observe; conversely, the mod-
ule can call its out actions, thereby generating events which
the parent architecture can observe. Architecture connec-
tions between components’ actions react to events gener-
ated by one component by generating events observed by
other components — thus connections define asynchronous
communication between components.

Any other constituents of a module (not in its inter-
face) can be referred to only locally within the module.
Conversely, a module can only refer to its interface con-
stituents and its internal constituents. These visibility
rules, together with parameter type restrictions (later) en-
sure communication integrity (Section II-B) of systems that
are instances of an architecture. Thus, modules of a sys-
tem communicate through the connections of the system’s
architecture.

Next we describe how the behaviors of interfaces execute
as components of an interface connection architecture.

An interface optionally contains a behavior which con-
sists of a set of types, objects, functions, and transition
rules. Only procrustean objects are allowed. Objects de-
clared in an interface model state. Transition rules model
how modules of the type react to patterns of observed
events by changing their states and generating events. A
behavior is an abstraction of modules of that interface type.

An interface observes in events from the architecture. It
reacts by executing its transition rules and generating out
events which are sent to other components. An interface
can also generate its own in events and observe its own out
events. Similarly, an interface observes calls to its provides
functions; the interface must declare functions in its be-
havior that are executed in response to these calls. When
an interface calls its requires functions 1t depends upon the
parent architecture to connect those calls to provides func-
tions in other components.

There are two kinds of transition rules in behaviors.
Those with the operator, =>, are called pipes; those with
the operator, ||> are called agents. A pipe with a sequen-
tial pattern in its body specifies the behavior of a single
thread of control, whereas an agent specifies the behavior
of arbitrarily many threads (below).

A state transition rule has two parts, a trigger and a

www.manaraa.com

body. A trigger is either an event pattern or a boolean-
valued expression. A body is an optional set of state as-
signments followed by a restricted pattern which describes
a poset. A provides function body is treated as if 1t was a
transition rule that is triggered by a function call; function
calls are treated as events.

The execution semantics of transition rules are as fol-
lows. If any of the boolean triggers are true, the process of
arbitrarily choosing one of the true triggers, executing its
rule body is repeated until none of the boolean triggers is
true.

Next, the interface observes an event from the set of
its events that have been generated and not yet observed.
These events are queued awaiting observation. An event
i1s observed by an interface at most once. If no events are
queued, the module waits for one. Events are observed in
a sequential order which is consistent with their temporal
and causal orderings. *

Observing an event may {rigger one or more transition
rules. A rule R triggers if some subset of the events thus far
observed but not yet used in triggering R match its pattern.
If more than one set of observed events can trigger a rule,
the earliest (in time and dependency) and largest is chosen.
If R triggers, the binding of placeholders used to match its
pattern is applied to its body, and that instance of R's body
is then ready for execution. The set of rule body instances
that are ready for execution are then executed one by one
in some order.

The guards in pattern triggers are evaluated whenever
an interface event 1s generated. Their values are associated
with the event. In matching a pattern that has a guard
(i.e., is restricted by a where condition — the guard), first
the pattern is matched with the observed events and then
the guard is evaluated. The value of the guard that is
associated with the last event used in matching the pat-
tern is taken as the value of the guard when the pattern is
matched.

Executing a rule body consists of changing the state of
the behavior part (by calling operations of objects declared
there), generating the unique poset of new events defined
by the instance of the restricted pattern, and adding the
poset to the execution of the parent architecture. When
the new events are added they depend on all of the events
in the match of the trigger; they also depend on events that
triggered the last rules to change any of the state objects
that are referenced in executing the rule (e.g., in a guard in
the trigger or in a parameter expression on the right side
of the rule). In addition, if the rule is a pipe, then all of
the generated events depend on all events generated by any
previous triggering of the rule.

Execution of a behavior then continues with evaluating

boolean triggers first, and then observing events, as above.
Below 1s a schema for the above ordering of activities:

loop
while (one or more boolean triggers
are_true) loop
choose one of the true triggers and

4This is called the orderly observation principle.

execute 1its rule’s body;
end while;
select an event £E;
for all pattern triggers triggered by E loop
execute the trigger’s rule’s body
end for;
end loop;

Any event may take part in triggering a given rule at
most once, although 1t may take part in triggering several
rules.

Constraints specify restrictions on the behavior of an in-
terface. That is, the behavior that results from executing
transition rules must match the pattern of a constraint. For
example, a constraint can specify that rules trigger only in
certain orders, in certain states, etc.

The behavior of a module corresponding to an interface
in an instance of an architecture is constrained to be con-
sistent with both the interface’s behavior and constraints
— 1.e., interface behaviors act as additional constraints on
modules that conform to the interface. °

Services

A service names a group of constituents in an interface
(note, it is not an object, it is a name.) Services provide a
powerful notation for connecting large numbers of actions
or functions (Section VI). Services also specify the types of
(complementary) connections an interface “expects” from
its parent architecture. So services specify, to some degree,
the types of other components to which an interface expects
to be connected.

A service S of type T in interface I declares that type
I has the provides and requires functions and objects of
T, and the in and out actions and services of T. To name
them the name “S” must be appended with the usual “.”
notation before the name of the constituent. For example,
if type T has an out action A, then “S.A” is a name of the
out action A of I.

Since a service is a type, it is a concise notation for repli-
cation (e.g., one can declare arrays of a service) of large
numbers of connections.

A service S is dual to Sifits type is dual T. A dual type
contains a set of constituents of I with the same names as
constituents of T, but with dual roles: a provides function
of T is a requires function of dual T, an in action of T is
an out action of dual T, a type S service of T is a type
dual S service of dual T, and conversely. Dual services of
the same type in objects (usually of different types) may be
connected together easily since they have complimentary
constituents.

Name types

Instead of pointers, RAPIDE has name types. For every
interface type T there is a corresponding type & T called
the name type of T. T is said to be the base type of &T.
For each object O of the interface type T there is a cor-
responding object in the name type &7 called the name

5In RAPIDE-1 modules can also be written in various programming
languages.

www.manaraa.com

of O. Each interface type 7' has an operator “&” defined
on 1t which converts an object of 7" into the corresponding
name in the name type, & 7. The only operators defined
on name types are equality (“="), assignment (“:="), and
dereferencing (“*”). Equality and assignment are defined
as usual. The dereference operator of a name type &T
is defined to convert a name in &7 to the corresponding
object of the interface type T.

Only the parent architecture (Section VI) of T may
dereference T's name. This restriction distinguishes name
types from pointers; its purpose is to ensure communica-
tion integrity (Section II-B). An example of name types is
given in Section VI.

Discussion

Component abstraction (Section IT) is provided by in-
terface types which include a powerful method of defining
behavior. A single RAPIDE transition rule can express the
reaction of a concurrent/distributed system since its out-
put pattern can define a complex poset of events with var-
ious dependencies and timing. Generally, many different
modules or architectures will conform (Section VI) to an
interface.

Commaunication integrity of architectures (Section IT) is
aided by style guidelines on the types of parameters of ac-
tions and functions, together with the visibility rules for
modules and interfaces. Parameters of functions and ac-
tions should be of Procrustean types or name types. Con-
sequently if a name of a component is passed, the receiver
cannot dereference it to start direct communication with
that component; only the parent architecture can commu-
nicate directly with its components. Style guidelines are
not enforced by the RAPIDE compiler.

Behaviors are non determinisitic. In matching triggers
of transition rules, events are selected one at a time and
rules that trigger are executed one at a time in an arbi-
trary order. Because of shared state between rules, and
since independent events may be selected in any order, the
triggering on posets and order of execution of state tran-
sitions, as well as the parameter values of the events or
function calls they generate, are all non deterministic.

Constraints may be supported in different ways by var-
ious tools. For example, executions can be checked and
violations detected (runtime checking tools), or transitions
may be allowed to execute only if a constraint won’t be
violated (safe execution), or transition rules can be proved
consistent with constraints (verification).

Complexity of Interfaces: Interfaces specify separately
synchronous communication by function calls from asyn-
chronous communication by events. Attempts to simplify
interface design by using the same specification mechanism
(e.g., provides and requires actions) lead users to incorrect
expectations, both in subtyping of interfaces ([KLM94]),
and in semantic equivalences between functions and ac-
tions. Interfaces also provide behaviors and constraints
to satisfy component abstraction (Section IT). Overall,
RAPIDE interfaces are more complex than, say, class pub-
lic parts in C+-+ or package specifications in Ada. Indeed,

richer interfaces are needed for architecture definition since
they must go beyond the traditional tnformation hiding role
of interfaces if they are to support component abstraction.

Eramples

Example: Automobile controls.
interface AutoControls is
provides

function Speedometer return MPH;
function Gas return Gallons;

in action Steering_ Wheel(A : Angle),

in action Accelerator(P : Position),
in action Brake(P : Pressure);
out action Warning(S : Status);

—— other constituents.
end AutoControls;

Comments: Instruments are specified as provides func-
tions or out actions. An AutoControls component (an in-
stance of the interface or a module of the type) must sup-
ply bodies or reactive rules for computing the functions.
A user can call these functions, if its requires functions are
connected to them by the architecture, and obtain their re-
turn results. So, in effect, they output readings when asked.
Similarly, a user can observe out events if the architecture
connects them to in events of the user.

Controls are specified as in actions. An AutoControls
component can observe, select and react to n events cor-
responding to these actions. A user must output events
containing position, pressure or angle data; this output
is connected by the architecture to these in actions and
thereby observed by the Autocontrols as in events.

AutoControls can output Warning_Light events with ap-
propriate status data; the assumption is the parent archi-
tecture will do something useful with them.

Many different modules (or architectural designs) will
conform (next section) to this interface.

Example: Specification of concurrent behavior.

behavior
Speedometer > 55 ||>
Accelerator(0) || Brake(High) || Warning(On);;

Comments: This agent transition rule could be part of the
behavior of the AutoControl interface. It is triggered by a
Boolean condition and specifies a reaction consisting of the
generation of three independent events. Two of these are
in events which will be observed by the AutoControl object
itself. The other is an out event which will cause other
events according to the architecture’s rules.

The events generated by triggering this rule will depend
on whatever events caused Speedometer >55 (e.g., events
causing some local state to change). An agent rule such
as this one, does not impose any dependency between the
events generated by different triggerings of the rule.

This rule abstracts a behavior of AutoControl modules —
albeit one that most drivers wouldn’t like.

www.manaraa.com

10

Example: An RS-232 service

type RS232 is interface
out action TXD; —— Transmit Data.
in action RXD; —— Receive Data.
out action RTS; —— Request to Send.
in action CTS; —— Clear to Send.
in action DSR; —— Data Set Ready.
in action DCD; —— Data Carrier Detect.

end RS232;

is interface
RS232;

type Computer
service S1, S2 :

end Computer;

type Modem is interface
service S : dual RS232;

end M(.)dem;

Comments: RS-232 is a common interface used between
computers and modems. It defines 25 signals, some of
which are generated by the computer to the modem, and
others from the modem to the computer. Here RS—232
1s abstracted as an interface type with in and out actions
corresponding to the 25 signals.

Using the service feature, a computer interface declares
two RS—232 services. A modem interface declares a dual
RS—232 service. Services in these interfaces express an
important abstraction of the modules with these interfaces.
Namely, the modules “expect” to be connected to other
modules with RS—232 services, again illustrating support
for component abstraction.

A computer and a modem can be connected in an ar-
chitecture by a single connection statement, as shown in
Section VI. This allows architectures with potentially large
numbers of connections to be written with clarity and con-
ciseness.

Note that a more ambitious interface would contain a
behavior part defining RS—232 prototcols.

VI. ARCHITECTURES

An interface connection architecture 1s a set of interfaces,
a set of connection rules, and a set of constraints. Con-
nection rules define relationships between events indepen-
dently of any implementation; they are communication ab-
straction constructs (Section IT). Connections are defined
using event patterns. Event patterns provide the expres-
sive power to define both static and dynamic architectures
(Section II).

Syntaz

An architecture contains declarations of types, compo-
nents and other objects, a set of connection rules, and a
set of constraints.

Semantics

Theoptional return type nameris thefinterface type of
the architecture. An architecture defines a module of that
interface type. If the return type is lomitted, the empty

architecture ::=

[with_clause]

architecture neme [return naeme] is
declarations

connections
{connection}

[constraints
constraints]

end name 7;’

declarations ::=
components, placeholders and Pascal-like
object and function declarations

connection ::=
basic_pattern_list tO basic_pattern_list 7;;’
| basic_function_pattern to
function_call_expression ;7
| pattern commection_op restricted_pattern ’;;’
| pattern commection_op component_generation ’;;’

basic_function_pattern ::=
function_call_expression [where expression]

conmection_op ::= ‘=>¢ | |[>¢

basic_pattern_list ::= basic_pattern
| basic_pattern_list *,’ basic_pattern

component_generation ::=
new name

constraints ::= {pattern ’;’}

Fig. 6. Outline of the architecture syntax.

interface type, Triv, 1s the default. Generally, in RAPIDE,
architectures are parameterized, and are therefore archi-
tecture generators that, when called, return modules of the
return type. Here, in order to focus on connection features,
we have omitted parameterization.

The RAPIDE architecture construct encapsulates both an
interface connection architecture in which all components
are interfaces, and instances of such an architecture, in
which components may be module of the interface types.
Types and components are declared in the declarations sec-
tion of an architecture.

Static architectures may simply declare all components
by naming them in object declarations. On the other hand,
dynamic architectures may declare the interface types of
components and rely on creation rules (below) to define
when, during execution, components of those types are cre-
ated or destroyed.

The connection part contains connection rules and cre-
ation rules. Connections define communication between
components by events or function calls, and creation rules
define event conditions that lead to creation of new com-
ponents.

A connection rule (Abbrev: connection) is composed of
two patterns. The patterns are separated by a connection
operator, (to, =>, |[>). As with transition rules, the left
pattern of a connection is called its trigger. The right side

www.manaraa.com

of a connection is called its body.

Connections are used to “wire up” components of an
architecture as follows. A trigger must be a pattern of
out events or requires function calls of components; a body
must be a pattern of in events or provides function calls of
components. A connection may also wire the architecture’s
interface to its components. In this case, the trigger is a
pattern of in events and provides functions of the interface
and the body is a pattern of in events and provides func-
tions of components, or conversely, the trigger is a pattern
of out events and requires functions of components and the
body is a pattern of out events and requires functions of
the interface.

The semantics of executing connections is as follows.
Events or function calls are either generated by the compo-
nents in the architecture or observed at the interface of the
architecture. These events are selected one-by-one (in any
order that 1s consistent with their dependency and tempo-
ral orders) and matched with the pattern triggers of the
connections. However, unlike transition rules, matching of
triggers of different connections may take place indepen-
dently or concurrently because there is no state shared be-
tween connections. The essential points are: (i) any event
may contribute once to triggering a particular connection
rule but may trigger many different rules, and (%) if more
than one poset of the selected events can trigger a rule
then an earliest (in the dependency order) maximal poset
1s used.

The guards in the pattern triggers of connection rules
are evaluated when an event is generated that can be ob-
served by the architecture. Their values are associated with
the event for future reference. During matching, if Pat is
guarded by a where condition, the value of that guard
that was associated with the last event to be selected in
matching Pat is used as the value of the guard.

The number of guards that need be evaluated for any

observable event can clearly be reduced in general. Any
given event will be a potential participant in matching only
a subset of the guarded patterns in the set of connection
triggers. This is a compiler optimization.
Basic connections. A basic connection is a to connection
between two basic patterns, or more generally, between two
lists of basic patterns. Consider a connection between two
basic patterns. Whenever an event matches (triggers) the
left pattern, Pat, in a basic connection rule, Patto Pat’,
then (i) all placeholders in the right pattern, Pat’, must
be bound by the match, (i) the rule results in generating
a new in event whose tuple is the instance of Pat’, and
this event is received by the component named in that tu-
ple, and (7ii) the two events are equivalent with respect to
dependency and time.

Equivalence of the two events means that all other events
have the same dependency relationship to both of the
events, and also the two events have the same timestamps.
This does not mean that the events are equal, but simply
that they cannot be distinguished by dependency or time.

A basic connection between two lists of basic patterns
1s a shorthand for several basic connections. That is, a

11

match of any one of the left patterns causes (or triggers)
the generation of the events, one for each pattern in the
right list, and the events generated are all equivalent to
the triggering event with respect to dependency and time.
Basic connections between functions. A basic connec-
tion defines an alias of a requires function of a component
to a provides function of a component, and a sychronization
at each call between the caller and callee. The following
conditions must hold for a basic connection between func-
tions to be correct: (i) the left pattern must match calls of
the requires function and the right pattern must match calls
to the provides function, (i) the provides function must be
a subtype of the requires function.

Evaluation of a call to the requires function triggers the
connection. The resulting instance of the connection’s right
pattern must be a call to the provides function. The caller’s
execution is suspended, the call to the provides function is
executed and any return object is returned to the caller as
the value of the (triggering) requires function call.

By using guards in the triggering function call, the alias
for a requires function can vary at runtime. If a requires
function call has more than one alias, perhaps because a
call triggers more than one connection, one of the return
objects 1s the result.

Basic connections can also alias provides (or requires)
functions of the architecture’s interface to provides (or re-
quires) functions of components, respectively.

Basic connections between services. A basic connec-
tion can be used to connect a service of a component to
a dual service of a component. The connection defines a
set of basic connections, one for each pair of constituents
with the same name in the two services. It is bi-directional
in the sense in each of the basic connections the out con-
stituent 1s action or function name in the trigger and the
i constituent is the action or function name in the body.
General connections. The semantics of a general con-
nection, Pat op Pat’, where op is => or ||>, are as fol-
lows. When Pat is matched, Pat’ must define a unique
poset (i.e., all placeholders in Pat’ must be bound by the
match). Then the connection is executed. The events in
the instance of Pat’ are generated together with the de-
pendencies defined as follows:

(i) each event in Pat’ depends on all events in the trigger-
ing poset,

(ii) each event depends on other events in Pat’ as defined
by the pattern, Pat’,

(iii) if the connection operator is => (a pipe) then all the
generated events depend on all events generated by previ-
ous triggerings of the connection.

The result is a new poset of in events of components and
out events of the interface.

An architecture may be constrained by patterns in its
constraint section. The sets of events generated by the
architecture’s interfaces and connections must match the
constraint patterns. Constraints may, for example, require
components to use a particular communication protocol.
As discussed in Section V, constraints may be supported
in different ways by various tools.

www.manaraa.com

12

Conformance to an interface

If an architecture is bound to a non-trival interface it

should conform to the interface. This means that :

1. calls to provides function names in the interface
should result (if at all) in objects of the return type.
To achieve this, the architecture should have basic con-
nections aliasing provides function names in the inter-
face to provides functions of its components, or alter-
natively it can declare an executable function body
with the same name.

2. Any poset of interface events resulting from execut-
ing the architecture should satisfy constraints in the
interface. That is, in events observed by the inter-
face may trigger connections in the architecture, and
result eventually in out events of the interface being
generated by connections in the architecture. These
out events will be related by dependencies and time to
the in events, thus defining posets of interface events.
The posets of interface events must satisfy the inter-
face constraints.

3. An interface poset generated by an architecture must
be a super poset of the poset generated by its interface
behavior (i.e., a superset of the events with an iden-
tical dependency order on the common subset). In
this sense, an interface behavior (Section V) acts as a
constraint on an architecture of that interface type.

Discussion

Connection rules provide communication abstraction
(Section IT). They refer only to constituents (functions and
actions) of interfaces of components and are independent
of the modules implementing the components.

Basic connections are fundamental. A general connec-
tion is, in fact, an abstract interface expressed in a suc-
cinct notation. A general connection can be replaced in
any architecture by a connector component (whose tran-
sition rule expresses the same connection relation between
in and out events) together with basic connections between
components and the connector.

Hierarchy (Section II) is provided by the ability to bind
architectures to interfaces using connections, and by con-
formance criteria. Both interfaces and connection rules can
be expanded into architectures (of lower level components).

Eramples

Example: A basic connection.

7P : Person; 7B :
connections

?P.Push(?B) to Button_ Light_ On(?B);;

Button;

Comments: This basic connection links pairs of events.
An event of any person pushing a button triggers the rule
and produces a new event denoting that the button’s light
is on. The two events are identical with respect to depen-
dencyrand time =riventhey haverthersame dependencies
with all other events and the same timing. It is not pos-
sible to distinguish the two events either by a clock or by

looking at their causal history. So the connection links per-
sons and lift buttons in a very strong way; the actions of
pushing buttons and lighting buttons appear identical ac-
cording to time and causal history.

Example: A dynamic architecture

with Airplane, Control Center;

architecture Air_ Control Sector is
?A : Airplane; M : Msg;
SFO : Control_Center;

connections
?A .Radio(?M) where 7A.InRange(SFO)
[|> SFO.Receive(?M);;

end .A.i.r_Control_Sector;

Comments: Assume the interfaces of Airplane and
Control_Center are already defined. The connection defines
event communication between any airplane and a partic-
ular control center as depicted in Figure 1, Section III.
Whenever any airplane (a match for ?A) generates a Radio
event containing a message and the InRange predicate of
that airplane is true in the state when the radio event is
generated, then SFO will receive a Receive event with the
same message. The connection triggers only when an air-
plane is in range.

This connection rule is a conditional broadcast between
all airplanes and the control tower. It defines communi-
cation in a system that may have varying numbers of air-
plane components. It is essentially a fan-in connection. It
imposes dependencies between pairs of Radio and Receive
events as shown in the poset Figure 2, Section III. In this
figure, nodes are events and directed arcs represent depen-
dency. The poset also shows that the Receive events are all
independent. This implies that they could be observed by
the control center concurrently.

To illustrate how posets distinguish between different ar-
chitectures, we simply change the connection rule in the
previous example to be a pipe instead of a basic connec-

tion.
Example: Pipelining air traffic control.

architecture Pipeline Control Sector is
?A : Airplane; M : Msg;
SFO : Control_Center;
connect
?A .Radio(?M) where InRange(?A, SFO)
=> SFO. Receive(?M);

end PipeLine Control Sector;

Comments: We have changed the air control sector archi-
tecture so that all radio events are observed at the control
center through a pipe rule. Essentially, a pipe is used to
connect airplanes and the control center as shown in Fig-
ure 3. Now all airplanes communicate with SFO by a single
pipe instead of by broadcast.

Pipe connections order the events they generate into a
linear dependency sequence. In this case, each generated
event, SFO.Receive, depends on the ?A.Radio event that
triggered the rule, and all previous SFO.Receive events.

www.manaraa.com

The SFO.Receive events are all in a linear dependence chain,
as shown in Figure 4. This means that messages can only
be received at the control center one-by-one in their depen-
dency order.

The semantic differences between the broadcast and
pipeline architectures are shown clearly by the posets in
the two figures, 2, 4.

13

Example: Using RS-232 to connect computers and
modems

with Computer, Modem:;

architecture Office is

PC : Computer;
Mod: Modem;
connect

PC.S1 to Mod.S;

—— bi-directional flow of events.

end 6ﬂice;

Comments: Following the RS—232 example (Section V),
connecting a computer component PC to a modem compo-
nent Mod in an office architecture requires a single connec-
tion rule between their RS—232 services (Figure 7). This
connection expresses a set of 25 basic connections between
pairs of RS—232 constituents with the same name; in each
connection the out constituent is the action in the trigger
pattern.

Erample: An Intelligent Network Architecture.

An intelligent network is a dynamic architecture which
works by passing the names of components to other compo-
nents. The restrictions on name types (Section V) ensure
that the Network Architecture’s connection rules define all
pairs of components that may participate directly in data
transfer.

There are three types of components: providers, clients,
and brokers. The numbers of components of each type can
vary (although in our example they are fixed). Providers
can Register with a broker, indicating the service they pro-
vide. The broker stores the names of providers (which are
contained in Register events as the actor element) and the
jobs they can perform.

A client can ask a broker for a provider of a job by call-
ing Find_Provider. As a result the name of a provider is
supplied by the broker to the client — not a provider itself.
A client can then use the name of the provider to request
a job. The client cannot dereference the name and get the
provider, and then call the provider directly. A client must
communicate a request for a job with the provider’s name
to the architecture. The parent architecture is the only
module that can dereference the provider’s name (in its
connection rules) and generate the request to the provider.

interface Provider is

provides function Do_Job(J : Job; P : Parameters)
return data;
out action Register(J : Job);
enc.l.;.
interface Client is
requires —— a list of functions
function Request_Job(J : Job; P : Parameters;
Pn : &Provider)
return Data;
function Find_ Provider(J : Job)
return &Provider;
enc.l.;.

www.manaraa.com

14

RS-232 service

Fig. 7. An RS-232 connection.

interface Broker is

provides function Provider_ Lookup(J : Job)
return &Provider;

in action Register_ Provider(J : Job; P : &Provider);
behavior

—— only store one Provider per Job type

Jobs : array [Job] of &Provider;

?J . Job;

N : &Provider;

function Provider_Lookup(J : Job)

return &Provider is

begin

return Jobs[J];

end;

Register_ Provider(?J, ?N) => Jobs[?]J] := 7Nj;
end;

The broker, client and provider components are declared
insthe network architecture (Figure 8)smAll of the direct
communication among pairs of components is defined by
three basic connection rules.

with Broker, Client, Provider;
architecture Network is

NTT : Broker;
clients : array [1.NUM_CLIENTS] of Client;
providers : array [1.NUM_PROVIDERS] of Provider;
P : Provider;
7] : Job;
?C : Client;
N : &Provider;
?param : parameters;
connect

?7P.Register(?J) to
NTT.Register_ Provider(?J, &7P);;

?C.Find_Provider(?J) to
NTT.Provider_Lookup(?J);;

?C.Request_Job(?J, ?param, ?N) to
«TN.Do_Job(?], 7param);;
end Network;

The first rule connects any provider’s out action Register
with the broker’s in action Register_Provider. This is a fan-
in rule connecting many providers to a single broker; asyn-
chronous actions are used so that providers don’t block.

The second rule defines an alias between a call to a
client’s Find_Provider function and a call to the broker’s
Provider_Lookup function; the return value is the name of
a provider. Again, it is fan-in rule connecting many clients
to a broker. Synchronous function call is used because
clients will need to wait for a return value. (If there were
multiple brokers, this rule could be generalized to alias a
call to Find_Provider to any broker, the result being one of
the returned names.)

The third rule aliases a call to any client’s Request_Job
function to a call to the Do_Job function of the

www.manaraa.com

15

BROKER

PROVIDER 1 w\\‘ ‘//' CLIENT 1
dynamic
PROVIDER 2 | = communication
/ cloud CLIENT 2
PROVIDER 3 / °

?C . Request_Job (?J, ?N, ?param)

DYNAMIC NETWORK ARCHITECTURE USING
NAME TYPE PARAMETERS

= (*7?N) .Do_Job (?J, ?param)

Fig. 8. An intelligent network.

provider whose name the client supplies. The rule
dereferences the provider name in the client’s call and
calls the provider’s Do_Job function. The rule ex-
presses Num_Clients * Num_Providers connections be-
tween pairs of components.

Communication integrity implies that these rules define
all of the direct communication in the Network between
pairs of clients, providers and the broker. They allow us to
draw some conclusions without knowledge of the modules
implementing these components. For example: (i)} since
none of the connection rules can be triggered by the bro-
ker, we know that the broker does not initiate any com-
munication. (i) Only providers can cause the broker’s
Register_Provider events. (iii) Clients do not communicate
data directly to clients, and providers do not communi-
cate data directly to providers. (iv) transfer of data from
a provider to a client has to be caused by a function call
from a client (i.e., limited junk mail rule).

These properties of the network communication could
not be deduced if the integrity of the connection rules (Sec-
tion II-B) could be subverted by passing components, or
pointers to components, as parameters of their functions
and actions. The deductions are valid even though com-
ponent names are being passed between the components.
This is because only the architecture Network may derefer-
ence the names of its components (as is done in the third
connection rule). Thus, for example, the broker cannot use
the name of providers it stores to communicate with them
directly. This would not be true if pointers were used in
place of names; the broker could dereference a pointer to
a provider and call the provider’s functions. In an ordi-

nary programming language we would have to examine the
implementations of all of the components.

VII. MAPPINGS

FEvent pattern mappings (Abbrev: mappings) can be
used to define how one architecture is related to another
one, or how an architecture 1s related to an interface. The
idea is to define how events in one system correspond to
events in another. In many cases, there 1s quite a wide dif-
ference between systems. For example, when two systems
are at different levels of abstraction many events in one may
correspond to just one event in the other (as is often the
case in hierarchical design). Patterns provide the necessary
expressive power to define these kinds of mappings.

Maps.

A map may be defined between any pair of interfaces or
architectures. Syntax of the map construct is given in Fig-
ure 9. The from and to names are names of architectures
or interfaces. Maps may declare local objects .
Semantics. Maps have visibility into the declarations of
their domain (from architecture) and range (to architec-
ture). Mapping rules can trigger on events happening at
the top level inside the domain, and generate events at the
top level inside the range. Rules in a mapping have the
same semantics as transition rules in components (or non
basic connections in architectures) ezcept that they do not
define any causal relation between the triggering events
(from the domain) and the events they generate (in the
range).

www.manaraa.com

16

map =
[with_clause]
map name from naeme to name is
declarations
rules
{ rule}
end map name 'y
rule =
trigger '=>" { map_statement '}y
trigger = pattern

[{ state assignment}]
[restricted_pattern]

map_statement 1=

Fig. 9. map syntax.

A. Frample: A stmple microprocessor

This section gives an example of two RAPIDE architec-
tures for a simple microprocessor and an event pattern
mapping from one to the other. It shows some of the com-
plexities of “real life” applications that require the power
of an event pattern language.

The original version of this example in [GL92] consisted
of three architectures in VHDL for a simple 16-bit micro-
processor at three commonly used design levels of abstrac-
tion: instruction level, register transfer level (RTL) and
gate level. This work reported the results of using map-
pings written in VAL (VHDL annotation language) to con-
trol the complexity of the VHDL simulation. The gate level
simulation for a very small input data sample produced
8073 events. Clearly, manual inspection of this amount of
output is difficult and error prone, even though 1t is very
small in comparison with industrial simulations. ® By us-
ing VAL mappings to map the gate level architecture to
the (RTL) architecture, and then map the RTL architec-
ture to the instruction level architecture, the number of
events in the mapped simulation was reduced to 5. Design
errors at the gate level and RTL (typically incorrect archi-
tecture connections) which are difficult to detect at that
level, were made manifest at the instruction level in the
form of missing events.

Thus a powerful application of event pattern maps to
design hierarchies lies in mapping complex low level simu-
lations into behaviors of a higher level, more abstract ar-
chitectures — called the mapped behavior. The mapped be-
havior is much smaller and simpler. This has the following
benefits:

o manual inspection of the mapped behavior 1s feasible.

o formal constraints are generally part of high level ar-

chitectures since they embody design requirements;
low level simulations can be “mapped up” and auto-
matically checked against high level constraints.

o errors in the mapped behavior can be traced back to

the low level architecture by analyzing where the trig-

S Indeedyindustryexperiencehasrelatedinstances where large scale
gate-level simulations have indicated design errors in microprocessors
which go undetected in analysis of simulator output, and are only
uncovered after manufacture (at far greater cost!).

ger patterns of the map matched in producing the high
level error.

Below we give the RAPIDE RTL architecture of the mi-
croprocessor and the mapping to the instruction level. Fig-
ure 10 is a picture of the RTL architecture, and Figure 11
is a picture of the map from patterns of RTL events to in-
structions; it shows the timing relationships between a set
of RTL events that would trigger the map, resulting in a
load event.

The RAPIDE global clock values are the same at all lev-
els in the design hierarchy. In Figure 11 these readings
are shown horizontally at both levels. The RTL pattern
involves 12 events that trigger the mapping for a load in-
struction. The arcs show the timing relations between the
events that are required by the trigger — i.e., some events
are required to occur after others, whereas some may occur
in any time order. The CL events, for example, are device
clock events. There are 4 CL events, defining three device
clock cycles. The trigger requires particular events to oc-
cur on each cycle. The shadow of the pattern depicts the
simulation time duration of the load instruction.

First, the interfaces of RTL component types (registers,
buffers, controllers, and logic unit) are given. State transi-
tions and constraints are omitted from these interfaces for
brevity. One may assume either that there are state tran-
sitions or else an executable gate level architecture for each
of these interfaces. Compilation dependencies between the
interfaces are expressed by with clauses. Some of these
interfaces could be derived from others by object-oriented
features of RAPIDE [Tea94a).

interface TypePreamble is

type bit;

type bit2 is array [l..2] of bit;
type bit12 is array [1..12] of bit;
type bitl6 is array [1..16] of bit;

type operations is (land, lor, Inot, Ixor);
type states is (ifl, if2, if3, if4, exl, ex2, Id,
end TypePreamble;

st);

—— interfaces of RTL components.
with TypePreamble, Register_Logic;
interface Register is

in action Din(val : bit16),
Clk(val : bit),
Ce(val :bit),
Oe(val : bit),
Rst(val : bit);
out action Dout(val : bitl6);
out action Load(r : bitl6);
out action OE(r : bitl6);

end Register;

interface Two_Output_Register_ Logic is

in action D(val : bitl6),
Ce(val : bit),
Rst(val : bit),
Oel(val : bit),
Oe2(val : bit);

out action DI(val : bitl6),
D2(val : bitl6);

end Two_Output_Register_Logic;

www.manaraa.com

17

L 1
Clr - » Read
Rst 1 C 1 _
RUN - = Write
16 | A 12
Ir R E = Addr
1
Clk
l_ 4
16 D R IR A A D 16
Din | R R LL—C = O = Dout
B [O|[1]|[2] |[3] U C B

Fig. 10. CPU register level architecture.

with TypePreamble, Two_Output_Register_Logic;
interface Two_Output_Register is
service X : Two_Output_Register_ Logic;

in action Clk(val : bit);

out action Load(r : bit2);

out action OEIl(r : bit2);

out action OE2(r : bit2);
end Two_Output_ Register;

with TypePreamble;
interface Buffer is
in action Din(val : bit16),
Oe(val : bit);
out action Dout(val : bit2);

out action output(b : bit16);
end Buffer;

with TypePreamble;
interface Logic_Unit is
in action A(val : bit16),
B(val : bit16),
Op(val : bit2);
out action C(val : bit16);

out action alu(a,b,c : bit2; op : operation);
end Logic_ Unit;

with TypePreamble, Two_Output_Register_Logic;
interface Controller is
in action op(val : bit2),
rl(val : bit2),
r2(val : bit2)
clr(val : bit),
run(val : bit),
rst(val : bit),
clk(val : bit);

)

out actionirCE(val : bit),
accCE(val : bit),
accOE(val : bit),
dinOE(val : bit),
irRST(val : bit),
readOE(val : bit),
writeOE(val : bit);
service reg [0..3] : dual Two_Output_Register_Logic;

—— used to report state changes

out action state(s : states);
behavior

Current_ State : States;

enc.l. .Controller;

Next an RTL interface and architecture are given. The
architecture, RTL_CPU_Arch, corresponds to Figure 10.
So, for example, ALU in the figure is a logic_unit, C is a
Controller, and R is a bank of four Two_Output_Registers.
The RAPIDE connections consist of bindings between the
RTL interface and architecture, and internal connections
between components — the architecture proper.

—— RTL interface of the microprocessor — see Fig 10.
with TypePreamble;
interface RTL_CPU _Interface is
in action Clk(val : bit),
Rst(val : bit),
Run(val : bit),
Clr(val : bit),
Din(val : bit2),
Ir(val : bit16);
out action Dout(val : bit2),

www.manaraa.com

18

6 10
3 6 10 13 20 23 26 28 30 33 36 40
Fig. 11. Map from register events to Load instruction.
Addr(val : bit12), DIB, DOB,
Read(val : bit), AEB . Buffer;
Wi 1 - bit): IR, ACC : Register;
nte(va : lt)’ R : array [0..3] of Two_Output_Register;
end RTL_CPU_Interface; ALU : Logic_ Unit;
C : Controller;
. o . ?bl : bit;
For simplicity, if the parameter profiles of the patterns 1 : integer;
on both sides of the “t0” are equivalent and what is wanted
connect

is that the parameter values of the left pattern be copied . o

. —— input bindings

into the corresponding positions of the right patterns, we Din to DIB.din;

allow the parameter list to be omitted from both sides. Ir to IR.din;

This convention is used in the following architecture. Clk to IA{[g]Cdclii{, RC[I]CICIE{’HI{{[CZI]k,dk’ R{3].clk,
Clr to C.clr;

figure. Run to C.run;

—— RTL architecture corresponding to the
ith pePreamble, Registe vomOutput_Register, Rst to C.rst;

—— architecture connections.

www.manharaa.com

C.dinOE to DIB.OE;

DIB.dout,ACC.Dout to R[0].X.din, R[1].X.din,
R[2].X.din, R[3].X.din;

R[?i].D1 to ALU.A, DOB.Din;

R[?].D2 to ALU.B;
—— The following connection connects each service of the
—— controller to the service of the corresponding register
—— in the register bank. This is equivalent to 28 basic
—— connections between pairs of actions.

C.reg[?] to R[%].X;

ALU.D to ACC.Din;
C.accCE to ACC.CE;
C.accOE to ACC.OE;

IR.dout(?b16) to ALU.op(?b16[7. .8]),
C.op(?b16[1. .2]), C.r1(?b16[3. .4]),
C.r2(?b16[5. .6]), AEB.din(7b16[5. .16]);

C.writeOE to DOB.OE, AEB.OE;
C.iurCE to IR.CE;
C.irRST to IR.Rst;

—— output bindings.
C.readOE to Read;
C.writeOE to Write;
AEB.dout to Addr;
DOB.dout to Dout;

end RTL_CPU_arch;

These connection rules have a particularly simple event-
based semantics since they are all basic connections defin-
ing equivalences between single events. There are no
guards, so the architecture is static. Each connection
means that whenever a given component generates an out-
put event then the corresponding component will receive
an (equivalent in dependency and time) input event. They
define equivalences between pairs of single events.

The component interfaces also define dependencies be-
tween input and output events by state transition rules
(which we have omitted) or by their underlying gate-level
architectures. So, when this RAPIDE architecture is exe-
cuted in response to some input, it will generate a poset
of events that gives the dependencies between events gen-
erated by the components as well as their timestamps ac-
cording to the RAPIDE global clock (see Figure 11).

In VHDL one must declare the connecting wires (called
signals) and bind each component’s ports (ports in VHDL
correspond to actions in RAPIDE) to the wires. Here,
RAPIDE basic connections allow us to define the “connect-
ing wires” directly. Also, RAPIDE interface services are
used to define 20 connections between the controller and
the register bank in one connection rule. The same archi-
tecture in VHDL given in [Gen91] took approximately 170
lines of VHDL to specify whereas it took less than 30 lines
here. Since errors in architecture connections are common,
it is important to develop succinct notation for them.

Below, we give the microprocessor instruction level in-
terface showing some of the instructions and the mapping
SimRef:n The SimRef maps finite setsof RTL events (those
matching its triggers) to single events at the instruction
level. So we expect an RTL behavior to be mapped to a

19

much simpler instruction level behavior. In this example,
the SimRef trigger uses only the timing relation between
events; 1t does not use causality.

—— CPU instruction set.
with TypePreamble;
interface Instruction Level CPU is

out action Load(a : bit12; r : integer; d : bit2);

out action Store(a: bit12; r : integer; d : bit2);

out action Exec(dl, d2 : bit2; sl, s2 : integer;
d3 : bit2; op : operations);

end Instruction_Level CPU;

—— FEvent pattern mapping.
with TypePreamble;
map SimRef from RTL cpu_arch
to Instruction_Level CPU is
Treg,7regl,Treg2 : register;
Ta : bit12;

7r,781,782,783 : integer;
?d,7d1,?7d2,7d3 : bit2;

n : bit16;
Top . operation;

function instrF(val : bitsZ) return states is

function regname(val : Register) return integer is

rules

—— mapping rule defining Load instruction.

Clk(1)

< (Ir.Load(?) where instrF(?)= 1d and C.State(if4))

< Clk(1)

< (AEB.Oe(?a) where (?a = ?i[5..16]) and
Read(l) and DIB.Output(?d) and C.State(ld))

< Clk(1)

< (?regload(?d) where ?r = regname(?reg) and
C.state(if1))

< Clk(1)
=> Load(?a, T, ?d);

mapping rule defining Store instruction.

clk(1)

< (IR.Joad(?) where instrF(?) = st and C.state(if4))
< clk(1)

< ((7reg.OE1(?d) where ?r = regname(?reg)

< DOB.OE(?d)) and
AEB.OE(?a) where 7a = bits(5,16,?i) and Write(l)
and C.state(st))
clk(l)
C.state(iﬂ)
< clk(1)
=> store(?a, T, ?d);

VARAN

mapping rule defining Fxec instruction

clk(l)

< (IR.load(?i) where instrF(?i) = ex and C.state(if4))
< clk(1)

www.manaraa.com

20

< (?regl.OE1(?d1) where ?sl=tegname(?regl)
and ?reg2.0E2(?d2) where ?s2=regname
and C.state(exl) and ALU.ALU(?op))

< clk(1)

< (Accload(?d3) and C.state(ex2))

< clk(1)

< (?reg.load(?d3) where ?s3=regname(?reg)
and C.state(if1))

< clk(1)
=> exec(?dl,?dZ,?sl,752,?d3,?s3,?0p);

end SimRef;

In defining a map, it is important to specify the trigger
of each rule so that it triggers on posets of low level events
that are sufficient to signify the corresponding high level
event. If the triggers can match some subset such as the
upper or lower bound events of the appropriate posets, the
mapped behavior will not be correct, but may contain ex-
traneous events. Patterns provide a powerful and succinct
notation for specifying sufficient posets.

The Load rule, for example, specifies the RTL events
which correspond to an instruction level Load event. Any
clock event with a parameter of 1 (indicating a rising edge
of the device clock) may initiate a Load behavior. On the
first clock cycle the instruction register Ir must load a in-
struction whose instruction field indicates a Load and the
controller C must transition to state if4. On the second
clock cycle the address enable buffer AEB must output a
particular address value 7a which is extracted from the in-
struction loaded in the previous cycle, the processor must
output a Read, the Data In Buffer DIB must output data
?d, and the Controller must transition to a Id state. On the
third clock cycle a register (any one in the register bank)
must execute a Load of the data ?d output by the DIB
in the previous cycle and the Controller must transition
to state ifl. When that clock cycle completes, this poset
maps to a Load instruction which indicates the data ?d was
loaded from address ?7a into register ?r.

The above mapping rules define completely the set of
RTL events together with their timing which correspond
to the instruction level events. Since causality is not ex-
pressed in the triggers (because this example is taken from
VHDL) the mapping rules are not sufficient. For example,
it would be possible, for some set of RTL events with the
correct timing to trigger a load mapping rule when a load
instruction is not executed.

VIII. HISTORY AND STATUS OF RAPIDE

RAPIDE has evolved from several sources: (a)
VHDL (for event-based and architecture concepts), (b)
ML [MTH90] and C++ [ES90] (for type systems), and (c)
TSL [LHM™*87] (for event patterns and formal constraints
on concurrent behavior expressed in terms of patterns of
events).

The evolutionary steps can be summarized as follows.
Firsty RAPIDEdepartsfrom previousevent-based languages
in adopting the partially ordered set of events (poset) exe-
cution model in place of linear traces of events. Simulations

in RAPIDE produce posets. The concept of posets has been
described by Fidge [Fid88], and Mattern [Mat88], and was
probably extant in the database literature since the 1970’s.
The first studies to our knowledge of the feasibility of imple-
menting simulation languages to produce poset executions,
and to check them for constraint violations, were done in-
dependently on the RAPIDE-0.2 project [Bry92],[MSV91],
and the OEsim project [AB91].

Secondly, there are many event-based reactive languages
in existence; a few of the ones that we have studied
are VHDL [VHDS8T7], Verilog [TM91], LOTOS [BB89],
CSP [Hoa78], and Esterel [BCG87]. Most of these lan-
guages have simple forms of event patterns for triggering
processes — e.g., VHDL has sensitivity lists which are dis-
junctions of events, and LOTOS has basic events with pred-
icate guards. In RAPIDE we have introduced more power-
ful event patterns, as is appropriate for specifying posets.
Event patterns play a basic role in features for defining
both reactive behaviors and formal constraints. Pattern
matching concepts go back at least to the unification al-
gorithm in Resolution theorem-proving [Rob65], and their
use in AT languages is typified in Planner [Hew71] and Pro-
log [CM84].

Third, the concepts of interface in Ada (package
specification) and VHDL (entity interface), both of
which we extended with formal annotations in prior
work [Luc90], [ALGT90], have been extended to interface
types in RAPIDE with a capability to specify concurrent
behavior. In these earlier languages, interfaces were not
types. Interface types can inherit from other types using
object-oriented methods, and are related by a notion of
structural subtyping [KLM94]. Much research is yet to be
done on interface design and the interplay between subtyp-
ing and well-formedness of architectures.

Fourth, VHDL provided us with the best previous model
of “architecture” which is a wiring of interfaces, totally
separated from a binding of interfaces to implementations
(configurations). Structural connections in VHDL, ex-
pressed by port maps that bind the ports of component
interface instances to signals in an architecture, are gener-
alized in RAPIDE to event pattern connection rules. This
feature allows dynamic architectures.

Finally, event patterns are used in RAPIDE to define
mappings between architectures, thus allowing for hierar-
chical and comparative simulation, as described in our ear-

lier work on VAL+ [GL92].

At present a simulation toolset for RAPIDE-1.0 is be-
ing tested on industrial examples of software and hard-
ware architectures of moderate complexity. The simulator
produces posets. Analysis tools display simulator output
graphically, automatically check output for violations of
formal constraints, and allow simulations to be animated
on pictures of the architecture that is being simulated. In-
put tools are being constructed to allow architectures to be
input in various formalisms and translated to Rapide. The
eventual goal is to develop an industry scale toolset.

www.manaraa.com

ACKNOWLEDGEMENTS

Our thanks are due to many people who have collab-
orated in experiments with various versions of RAPIDE

and its toolset.

Especially, our thanks are due to John

McHugh and John Munson (University of North Carolina
and TRW), and members of the Rapide design team: John
Kenney, Doug Bryan, Walter Mann, Alexandre Santoro,
and Larry Augustin (Stanford), Sigurd Meldal (University
of Bergen), and Frank Belz and Holly Hildreth (TRW).

[AB91]

[Ada94]

[ALG190]

[BBs9)

[BCG87]

[Bry92]

[CM84]
[ES90]

[Fidss)

[Gen91]

[GL92]

[Gro91]

[Hew71]

[HoaT78]

[KLMO94]

[LHM87]

[LKAt95]

REFERENCES

Tod Amon and Gaetano Borriello. OEsim: A simula-
tor for timing behavior. ACM/IEEE Design Automation
Conference, 28(1):656—661, June 1991.

Intermetrics Inc., Cambridge, Mass. Ada 9X Reference
Manual, June 1994. ANSI/ISO Draft International Stan-
dard.

Larry M. Augustin, David C. Luckham, Benoit A. Gen-
nart, Youm Huh, and Alec G. Stanculescu. Hardware De-
sign and Stmulation in VAL/VHDL. Kluwer Academic
Publishers, October 1990. 322 pages.

T. Bolognesi and E. Brinksma. Introduction to the ISO
specification language LOTOS. In van Eijk et al, editor,
The Formal description Technigue LOTOS, pages 23-73.
North-Holland, 1989.

G. Berry, P. Couronne, and G. Gonthier. Synchronous
programming of reactive systems: an introduction to Es-
terel. Technical Report 647, INRIA, Paris, March 1987.
Doug Bryan. Rapide—0.2 language and tool-set overview.
Technical Note CSL-TN-92-387, Computer Systems
Lab, Stanford University, February 1992.

W.F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, second edition, 1984.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated
C++ Reference Manual. Addison-Wesley, 1990.

Colin J. Fidge. Timestamps in message-passing systems
that preserve the partial ordering. Australian Computer
Science Communications, 10(1):55-66, February 1988.
B.A. Gennart. Automated Analysis of Discrete Event
Simulations Using Event Pattern Mappings. PhD the-
sis, Stanford University, April 1991. Also Stanford Uni-
versity Computer Systems Laboratory Technical Report
No. CSL-TR-91-464.

Benoit A. Gennart and David C. Luckham. Validating
discrete event simulations using event pattern mappings.
In Proceedings of the 29th Design Automation Conference
(DAC), pages 414-419, Anaheim, CA, June 1992. IEEE
Computer Society Press.

The Object Management Group. The Common Object
Request Broker: Architecture and Specification. The Ob-
ject Management Group, revision 1.1 edition, December
1991.

Carl Hewitt. Description and Theoretical Analysis of
Planner. PhD thesis, MIT, 1971.

C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666—677, August
1978.

Dinesh Katiyar, David Luckham, and John Mitchell. A
type system for prototyping languages. In Proc. 21-st
ACM Symp. on Principles of Programming Languages,
Portland, 1994.

David C. Luckham, David P. Helmbold, Sigurd Meldal,
Douglas L. Bryan, and Michael A. Haberler. Task se-
quencinglanguage for specifying distributed Ada systems:
TSL-1. In Proceedings of PARLE: Conference on Paral-
lel Architectures and Languages Europe. Lecture Notes
in Computer Science. Number 259, Volume II: Parallel
Languages, pages 444-463, Eindhoven, The Netherlands,
15-19 June 1987. Springer- Verlag.

David C. Luckham, John J. Kenney, Larry M. Augustin,
JamespVerapDougiBryangrandsWalter Mann. Specifica-
tion and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, 21(4):336—
355, April 1995.

[Luc90]

[LVB*93]

[LVM]

[Mat88]

[MSVo1]

[MTH90]

[Rob65]

[Tea94al

[Tea94b]

[Tea94c]

[TM91]

[VHDS7]

[XoD92]

21

David C. Luckham. Programming with Specifications: An
Introduction to ANNA, A Language for Specifying Ada
Programs. Texts and Monographs in Computer Science.
Springer-Verlag, October, 1990.

David C. Luckham, James Vera, Doug Bryan, Larry Au-
gustin, and Frank Belz. Partial orderings of event sets
and their application to prototyping concurrent, timed
systems. Journal of Systems and Software, 21(3):253—
265, June 1993.

David C. Luckham, James Vera, and Sigurd Meldal.
Three concepts of system architecture. submitted to the
Communications of the ACM.

F. Mattern. Virtual time and global states of distributed
systems. In M. Cosnard, editor, Proceedings of Parallel
and Distributed Algorithms. Elsevier Science Publishers,
1988. Also in: Report No. SFB124P38/88, Dept. of Com-
puter Science, University of Kaiserslautern.

Sigurd Meldal, Sriram Sankar, and James Vera. Exploit-
ing locality in maintaining potential causality. In Proceed-
ings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, pages 231-239, New York, NY,
August 1991. ACM Press. Also Stanford University Com-
puter Systems Laboratory Technical Report No. CSL—
TR-91-466.

Robin Milner, Mads Tofte, and Robert Harper. The Def-
inition of Standard ML. MIT Press, 1990.

J.A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23-41,
January 1965.

Rapide Design Team. The Rapide-1 Executable Language
Reference Manual. Program Analysis and Verification
Group, Computer Systems Lab., Stanford University, ver-
sion 1 edition, October 1994.

Rapide Design Team. The Rapide-1 Specification Lan-
guage Reference Manual Program Analysis and Verifica-
tion Group, Computer Systems Lab., Stanford University,
version 1 edition, October 1994.

Rapide Design Team. The Rapide-1 Types Reference
Manual Program Analysis and Verification Group, Com-
puter Systems Lab., Stanford University, version 1 edi-
tion, October 1994.

D. E. Thomas and P. R. Moorby. The Verilog hardware
description language. Kluwer Academic Publishers, 1991.
IEEE, Inc., 345 East 47th Street, New York, NY,
10017. IEEE Standard VHDL Language Reference Man-
wal, March 1987. IEEE Standard 1076-1987.

X/Open Company Ltd., Apex Plaza, Forbury Road,
Reading, Berkshire RGI 1AX, UK. Distributed Trans-
action Processing: The Peer—to—Peer Specification, De-
cember 1992. Snapshot.

www.manaraa.com

